Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 113(52): 14988-14993, 2016 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-27956611

RESUMEN

The CRISPR/Cas9 nuclease is commonly used to make gene knockouts. The blunt DNA ends generated by cleavage can be efficiently ligated by the classical nonhomologous end-joining repair pathway (c-NHEJ), regenerating the target site. This repair creates a cycle of cleavage, ligation, and target site regeneration that persists until sufficient modification of the DNA break by alternative NHEJ prevents further Cas9 cutting, generating a heterogeneous population of insertions and deletions typical of gene knockouts. Here, we develop a strategy to escape this cycle and bias events toward defined length deletions by creating an RNA-guided dual active site nuclease that generates two noncompatible DNA breaks at a target site, effectively deleting the majority of the target site such that it cannot be regenerated. The TevCas9 nuclease, a fusion of the I-TevI nuclease domain to Cas9, functions robustly in HEK293 cells and generates 33- to 36-bp deletions at frequencies up to 40%. Deep sequencing revealed minimal processing of TevCas9 products, consistent with protection of the DNA ends from exonucleolytic degradation and repair by the c-NHEJ pathway. Directed evolution experiments identified I-TevI variants with broadened targeting range, making TevCas9 an easy-to-use reagent. Our results highlight how the sequence-tolerant cleavage properties of the I-TevI homing endonuclease can be harnessed to enhance Cas9 applications, circumventing the cleavage and ligation cycle and biasing genome-editing events toward defined length deletions.


Asunto(s)
Sistemas CRISPR-Cas , Endodesoxirribonucleasas/genética , Eliminación de Gen , Edición Génica , Roturas del ADN de Doble Cadena , Reparación de la Incompatibilidad de ADN , Endopeptidasa K/química , Escherichia coli , Genoma , Células HEK293 , Humanos , ARN Guía de Kinetoplastida/genética , Análisis de Secuencia de ADN , Eliminación de Secuencia
2.
Nucleic Acids Res ; 42(13): 8816-29, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25013171

RESUMEN

Targeting gene disruptions in complex genomes relies on imprecise repair by the non-homologous end-joining DNA pathway, creating mutagenic insertions or deletions (indels) at the break point. DNA end-processing enzymes are often co-expressed with genome-editing nucleases to enhance the frequency of indels, as the compatible cohesive ends generated by the nucleases can be precisely repaired, leading to a cycle of cleavage and non-mutagenic repair. Here, we present an alternative strategy to bias repair toward gene disruption by fusing two different nuclease active sites from I-TevI (a GIY-YIG enzyme) and I-OnuI E2 (an engineered meganuclease) into a single polypeptide chain. In vitro, the MegaTev enzyme generates two double-strand breaks to excise an intervening 30-bp fragment. In HEK 293 cells, we observe a high frequency of gene disruption without co-expression of DNA end-processing enzymes. Deep sequencing of disrupted target sites revealed minimal processing, consistent with the MegaTev sequestering the double-strand breaks from the DNA repair machinery. Off-target profiling revealed no detectable cleavage at sites where the I-TevI CNNNG cleavage motif is not appropriately spaced from the I-OnuI binding site. The MegaTev enzyme represents a small, programmable nuclease platform for extremely specific genome-engineering applications.


Asunto(s)
Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/metabolismo , Eliminación de Secuencia , Dominio Catalítico , Roturas del ADN de Doble Cadena , División del ADN , Reparación del ADN , Endodesoxirribonucleasas/genética , Ingeniería Genética , Células HEK293 , Humanos , Mutagénesis , Motivos de Nucleótidos , Proteínas Recombinantes de Fusión/metabolismo
3.
Nucleic Acids Res ; 41(10): 5413-27, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23558745

RESUMEN

The GIY-YIG nuclease domain is found within protein scaffolds that participate in diverse cellular pathways and contains a single active site that hydrolyzes DNA by a one-metal ion mechanism. GIY-YIG homing endonucleases (GIY-HEs) are two-domain proteins with N-terminal GIY-YIG nuclease domains connected to C-terminal DNA-binding and they are thought to function as monomers. Using I-BmoI as a model GIY-HE, we test mechanisms by which the single active site is used to generate a double-strand break. We show that I-BmoI is partially disordered in the absence of substrate, and that the GIY-YIG domain alone has weak affinity for DNA. Significantly, we show that I-BmoI functions as a monomer at all steps of the reaction pathway and does not transiently dimerize or use sequential transesterification reactions to cleave substrate. Our results are consistent with the I-BmoI DNA-binding domain acting as a molecular anchor to tether the GIY-YIG domain to substrate, permitting rotation of the GIY-YIG domain to sequentially nick each DNA strand. These data highlight the mechanistic differences between monomeric GIY-HEs and dimeric or tetrameric GIY-YIG restriction enzymes, and they have implications for the use of the GIY-YIG domain in genome-editing applications.


Asunto(s)
Roturas del ADN de Doble Cadena , Endodesoxirribonucleasas/metabolismo , ADN/metabolismo , Roturas del ADN de Cadena Simple , División del ADN , Endodesoxirribonucleasas/química , Estructura Terciaria de Proteína
4.
Proc Natl Acad Sci U S A ; 109(21): 8061-6, 2012 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-22566637

RESUMEN

Targeted manipulation of complex genomes often requires the introduction of a double-strand break at defined locations by site-specific DNA endonucleases. Here, we describe a monomeric nuclease domain derived from GIY-YIG homing endonucleases for genome-editing applications. Fusion of the GIY-YIG nuclease domain to three-member zinc-finger DNA binding domains generated chimeric GIY-zinc finger endonucleases (GIY-ZFEs). Significantly, the I-TevI-derived fusions (Tev-ZFEs) function in vitro as monomers to introduce a double-strand break, and discriminate in vitro and in bacterial and yeast assays against substrates lacking a preferred 5'-CNNNG-3' cleavage motif. The Tev-ZFEs function to induce recombination in a yeast-based assay with activity on par with a homodimeric Zif268 zinc-finger nuclease. We also fused the I-TevI nuclease domain to a catalytically inactive LADGLIDADG homing endonuclease (LHE) scaffold. The monomeric Tev-LHEs are active in vivo and similarly discriminate against substrates lacking the 5'-CNNNG-3' motif. The monomeric Tev-ZFEs and Tev-LHEs are distinct from the FokI-derived zinc-finger nuclease and TAL effector nuclease platforms as the GIY-YIG domain alleviates the requirement to design two nuclease fusions to target a given sequence, highlighting the diversity of nuclease domains with distinctive biochemical properties suitable for genome-editing applications.


Asunto(s)
Roturas del ADN de Doble Cadena , Endonucleasas/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Ingeniería Genética/métodos , Genoma Bacteriano/genética , Secuencia de Bases , Dominio Catalítico/genética , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Escherichia coli/enzimología , Proteínas de Escherichia coli/metabolismo , Datos de Secuencia Molecular , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Reparación del ADN por Recombinación/fisiología , Dedos de Zinc/genética
5.
Methods Mol Biol ; 1123: 97-104, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24510263

RESUMEN

Homing endonucleases and other site-specific endonucleases have potential applications in genome editing, yet efficient targeting requires a thorough understanding of DNA-sequence specificity. Here, we describe a modified two-plasmid genetic selection in Escherichia coli that allows rapid profiling of nucleotide substitutions within a target site of given endonucleases. The selection utilizes a toxic plasmid (pTox) that encodes a DNA gyrase toxin in addition to the endonuclease target site. Cleavage of the toxic plasmid by an endonuclease expressed from a second plasmid (pEndo) facilitates growth under selective conditions. The modified protocol utilizes competent cells harboring the endonuclease expression plasmid into which target site plasmids are transformed. Replica plating on nonselective and selective media plates identifies cleavable and non-cleavable targets. Thus, a library of randomized target sites, or many individual target sites, can be analyzed using a single transformation. Both cleavable and non-cleavable targets can be analyzed by DNA sequencing to gain information about nucleotide preference in the endonuclease's target site.


Asunto(s)
Sitios de Unión , División del ADN , Endonucleasas/metabolismo , Plásmidos/genética , Biblioteca de Genes , Marcación de Gen , Especificidad por Sustrato
6.
G3 (Bethesda) ; 4(6): 1155-65, 2014 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-24739648

RESUMEN

Precise genome editing in complex genomes is enabled by engineered nucleases that can be programmed to cleave in a site-specific manner. Here, we fused the small, sequence-tolerant monomeric nuclease domain from the homing endonuclease I-TevI to transcription-like activator effectors (TALEs) to create monomeric Tev-TALE nucleases (Tev-mTALENs). Using the PthXo1 TALE scaffold to optimize the Tev-mTALEN architecture, we found that choice of the N-terminal fusion point on the TALE greatly influenced activity in yeast-based assays, and that the length of the linker used affected the optimal spacing of the TALE binding site from the I-TevI cleavage site, specified by the motif 5'-CNNNG-3'. By assaying activity on all 64 possible sequence variants of this motif, we discovered that in the Tev-mTALEN context, I-TevI prefers A/T-rich triplets over G/C-rich ones at the cleavage site. Profiling of nucleotide requirements in the DNA spacer that separates the CNNNG motif from the TALE binding site revealed substantial, but not complete, tolerance to sequence variation. Tev-mTALENs showed robust mutagenic activity on an episomal target in HEK 293T cells consistent with specific cleavage followed by nonhomologous end-joining repair. Our data substantiate the applicability of Tev-mTALENs as genome-editing tools but highlight DNA spacer and cleavage site nucleotide preferences that, while enhancing specificity, do confer moderate targeting constraints.


Asunto(s)
Endodesoxirribonucleasas/metabolismo , Dominios y Motivos de Interacción de Proteínas , Secuencia de Bases , Sitios de Unión , Línea Celular , Endodesoxirribonucleasas/química , Activación Enzimática , Marcación de Gen , Variación Genética , Vectores Genéticos , Proteínas de Homeodominio , Humanos , Datos de Secuencia Molecular , Motivos de Nucleótidos , Proteínas Recombinantes de Fusión , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA