RESUMEN
Genomics has provided a detailed structural description of the cancer genome. Identifying oncogenic drivers that work primarily through dosage changes is a current challenge. Unrestrained proliferation is a critical hallmark of cancer. We constructed modular, barcoded libraries of human open reading frames (ORFs) and performed screens for proliferation regulators in multiple cell types. Approximately 10% of genes regulate proliferation, with most performing in an unexpectedly highly tissue-specific manner. Proliferation drivers in a given cell type showed specific enrichment in somatic copy number changes (SCNAs) from cognate tumors and helped predict aneuploidy patterns in those tumors, implying that tissue-type-specific genetic network architectures underlie SCNA and driver selection in different cancers. In vivo screening confirmed these results. We report a substantial contribution to the catalog of SCNA-associated cancer drivers, identifying 147 amplified and 107 deleted genes as potential drivers, and derive insights about the genetic network architecture of aneuploidy in tumors.
Asunto(s)
Aneuploidia , Neoplasias/patología , Animales , Línea Celular Tumoral , Proliferación Celular , Mapeo Cromosómico , Cromosomas/genética , Factor de Transcripción E2F1/antagonistas & inhibidores , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Femenino , Biblioteca de Genes , Genómica , Humanos , Queratinas/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID , Oncogenes , Sistemas de Lectura Abierta/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismoRESUMEN
Programmed cell death protein 1 (PD-1) ligation delimits immunogenic responses in T cells. However, the consequences of programmed cell death 1 ligand 1 (PD-L1) ligation in T cells are uncertain. We found that T cell expression of PD-L1 in cancer was regulated by tumor antigen and sterile inflammatory cues. PD-L1+ T cells exerted tumor-promoting tolerance via three distinct mechanisms: (1) binding of PD-L1 induced STAT3-dependent 'back-signaling' in CD4+ T cells, which prevented activation, reduced TH1-polarization and directed TH17-differentiation. PD-L1 signaling also induced an anergic T-bet-IFN-γ- phenotype in CD8+ T cells and was equally suppressive compared to PD-1 signaling; (2) PD-L1+ T cells restrained effector T cells via the canonical PD-L1-PD-1 axis and were sufficient to accelerate tumorigenesis, even in the absence of endogenous PD-L1; (3) PD-L1+ T cells engaged PD-1+ macrophages, inducing an alternative M2-like program, which had crippling effects on adaptive antitumor immunity. Collectively, we demonstrate that PD-L1+ T cells have diverse tolerogenic effects on tumor immunity.
Asunto(s)
Antígeno B7-H1/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Tolerancia Inmunológica/inmunología , Macrófagos/inmunología , Autotolerancia/inmunología , Animales , Diferenciación Celular/inmunología , Línea Celular Tumoral , Femenino , Humanos , Interferón gamma/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Receptor de Muerte Celular Programada 1/inmunología , Transducción de Señal/inmunología , Microambiente Tumoral/inmunologíaRESUMEN
Deregulated inflammation is a critical feature driving the progression of tumors harboring mutations in the liver kinase B1 (LKB1), yet the mechanisms linking LKB1 mutations to deregulated inflammation remain undefined. Here, we identify deregulated signaling by CREB-regulated transcription coactivator 2 (CRTC2) as an epigenetic driver of inflammatory potential downstream of LKB1 loss. We demonstrate that LKB1 mutations sensitize both transformed and non-transformed cells to diverse inflammatory stimuli, promoting heightened cytokine and chemokine production. LKB1 loss triggers elevated CRTC2-CREB signaling downstream of the salt-inducible kinases (SIKs), increasing inflammatory gene expression in LKB1-deficient cells. Mechanistically, CRTC2 cooperates with the histone acetyltransferases CBP/p300 to deposit histone acetylation marks associated with active transcription (i.e., H3K27ac) at inflammatory gene loci, promoting cytokine expression. Together, our data reveal a previously undefined anti-inflammatory program, regulated by LKB1 and reinforced through CRTC2-dependent histone modification signaling, that links metabolic and epigenetic states to cell-intrinsic inflammatory potential.
Asunto(s)
Histonas , Proteínas Serina-Treonina Quinasas , Humanos , Histonas/genética , Histonas/metabolismo , Acetilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Citocinas/metabolismo , Inflamación/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
The MYC oncoproteins are thought to stimulate tumor cell growth and proliferation through amplification of gene transcription, a mechanism that has thwarted most efforts to inhibit MYC function as potential cancer therapy. Using a covalent inhibitor of cyclin-dependent kinase 7 (CDK7) to disrupt the transcription of amplified MYCN in neuroblastoma cells, we demonstrate downregulation of the oncoprotein with consequent massive suppression of MYCN-driven global transcriptional amplification. This response translated to significant tumor regression in a mouse model of high-risk neuroblastoma, without the introduction of systemic toxicity. The striking treatment selectivity of MYCN-overexpressing cells correlated with preferential downregulation of super-enhancer-associated genes, including MYCN and other known oncogenic drivers in neuroblastoma. These results indicate that CDK7 inhibition, by selectively targeting the mechanisms that promote global transcriptional amplification in tumor cells, may be useful therapy for cancers that are driven by MYC family oncoproteins.
Asunto(s)
Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Modelos Animales de Enfermedad , Neuroblastoma/tratamiento farmacológico , Proteínas Nucleares/metabolismo , Proteínas Oncogénicas/metabolismo , Fenilendiaminas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/uso terapéutico , Animales , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Quinasas Ciclina-Dependientes/metabolismo , Humanos , Proteína Proto-Oncogénica N-Myc , Transcripción Genética/efectos de los fármacos , Quinasa Activadora de Quinasas Ciclina-DependientesRESUMEN
Esophageal squamous cell carcinoma (ESCC) is one of the most lethal cancers worldwide and evolves often to lung metastasis. P53R175H (homologous to Trp53R172H in mice) is a common hot spot mutation. How metastasis is regulated by p53R175H in ESCC remains to be investigated. To investigate p53R175H-mediated molecular mechanisms, we used a carcinogen-induced approach in Trp53R172H/- mice to model ESCC. In the primary Trp53R172H/- tumor cell lines, we depleted Trp53R172H (shTrp53) and observed a marked reduction in cell invasion in vitro and lung metastasis burden in a tail-vein injection model in comparing isogenic cells (shCtrl). Furthermore, we performed bulk RNA-seq to compare gene expression profiles of metastatic and primary shCtrl and shTrp53 cells. We identified the YAP-BIRC5 axis as a potential mediator of Trp53R172H -mediated metastasis. We demonstrate that expression of Survivin, an antiapoptotic protein encoded by BIRC5, increases in the presence of Trp53R172H Furthermore, depletion of Survivin specifically decreases Trp53R172H-driven lung metastasis. Mechanistically, Trp53R172H but not wild-type Trp53, binds with YAP in ESCC cells, suggesting their cooperation to induce Survivin expression. Furthermore, Survivin high expression level is associated with increased metastasis in several GI cancers. Taken together, this study unravels new insights into how mutant p53 mediates metastasis.
Asunto(s)
Neoplasias Pulmonares/fisiopatología , Survivin/genética , Survivin/metabolismo , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica/genética , Neoplasias Pulmonares/genética , Ratones , Mutación , Metástasis de la Neoplasia , Transcriptoma , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
More than 90% of small cell lung cancers (SCLCs) harbor loss-of-function mutations in the tumor suppressor gene RB1 The canonical function of the RB1 gene product, pRB, is to repress the E2F transcription factor family, but pRB also functions to regulate cellular differentiation in part through its binding to the histone demethylase KDM5A (also known as RBP2 or JARID1A). We show that KDM5A promotes SCLC proliferation and SCLC's neuroendocrine differentiation phenotype in part by sustaining expression of the neuroendocrine transcription factor ASCL1. Mechanistically, we found that KDM5A sustains ASCL1 levels and neuroendocrine differentiation by repressing NOTCH2 and NOTCH target genes. To test the role of KDM5A in SCLC tumorigenesis in vivo, we developed a CRISPR/Cas9-based mouse model of SCLC by delivering an adenovirus (or an adeno-associated virus [AAV]) that expresses Cre recombinase and sgRNAs targeting Rb1, Tp53, and Rbl2 into the lungs of Lox-Stop-Lox Cas9 mice. Coinclusion of a KDM5A sgRNA decreased SCLC tumorigenesis and metastasis, and the SCLCs that formed despite the absence of KDM5A had higher NOTCH activity compared to KDM5A+/+ SCLCs. This work establishes a role for KDM5A in SCLC tumorigenesis and suggests that KDM5 inhibitors should be explored as treatments for SCLC.
Asunto(s)
Diferenciación Celular/genética , Células Neuroendocrinas/citología , Receptores Notch/fisiología , Proteína 2 de Unión a Retinoblastoma/metabolismo , Transducción de Señal/genética , Carcinoma Pulmonar de Células Pequeñas/enzimología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Línea Celular , Transformación Celular Neoplásica/genética , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica/genética , Histona Demetilasas/metabolismo , Humanos , Técnicas In Vitro , Ratones , Células Neuroendocrinas/patología , Carcinoma Pulmonar de Células Pequeñas/fisiopatologíaRESUMEN
Response to immune checkpoint blockade in mesenchymal tumors is poorly characterized, but immunogenomic dissection of these cancers could inform immunotherapy mediators. We identified a treatment-naive patient who has metastatic uterine leiomyosarcoma and has experienced complete tumor remission for >2 years on anti-PD-1 (pembrolizumab) monotherapy. We analyzed the primary tumor, the sole treatment-resistant metastasis, and germline tissue to explore mechanisms of immunotherapy sensitivity and resistance. Both tumors stained diffusely for PD-L2 and showed sparse PD-L1 staining. PD-1+ cell infiltration significantly decreased in the resistant tumor (p = 0.039). Genomically, the treatment-resistant tumor uniquely harbored biallelic PTEN loss and had reduced expression of two neoantigens that demonstrated strong immunoreactivity with patient T cells in vitro, suggesting long-lasting immunological memory. In this near-complete response to PD-1 blockade in a mesenchymal tumor, we identified PTEN mutations and reduced expression of genes encoding neoantigens as potential mediators of resistance to immune checkpoint therapy.
Asunto(s)
Resistencia a Antineoplásicos/genética , Leiomiosarcoma/patología , Fosfohidrolasa PTEN/genética , Neoplasias Uterinas/patología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Antineoplásicos/uso terapéutico , Análisis Mutacional de ADN , Femenino , Perfilación de la Expresión Génica , Humanos , Leiomiosarcoma/tratamiento farmacológico , Leiomiosarcoma/genética , Persona de Mediana Edad , Mutación , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Transcriptoma , Neoplasias Uterinas/tratamiento farmacológico , Neoplasias Uterinas/genéticaRESUMEN
Accumulating evidence implicates heterogeneity within cancer cell populations in the response to stressful exposures, including drug treatments. While modeling the acute response to various anticancer agents in drug-sensitive human tumor cell lines, we consistently detected a small subpopulation of reversibly "drug-tolerant" cells. These cells demonstrate >100-fold reduced drug sensitivity and maintain viability via engagement of IGF-1 receptor signaling and an altered chromatin state that requires the histone demethylase RBP2/KDM5A/Jarid1A. This drug-tolerant phenotype is transiently acquired and relinquished at low frequency by individual cells within the population, implicating the dynamic regulation of phenotypic heterogeneity in drug tolerance. The drug-tolerant subpopulation can be selectively ablated by treatment with IGF-1 receptor inhibitors or chromatin-modifying agents, potentially yielding a therapeutic opportunity. Together, these findings suggest that cancer cell populations employ a dynamic survival strategy in which individual cells transiently assume a reversibly drug-tolerant state to protect the population from eradication by potentially lethal exposures.
Asunto(s)
Resistencia a Antineoplásicos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Línea Celular Tumoral , Cromatina/metabolismo , Cromatina/patología , Daño del ADN , Inhibidores de Histona Desacetilasas/farmacología , Histona Demetilasas/metabolismo , Humanos , Histona Demetilasas con Dominio de Jumonji/antagonistas & inhibidores , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Neoplasias/metabolismo , Receptor IGF Tipo 1/metabolismoRESUMEN
The CCCTC-binding factor (CTCF), which anchors DNA loops that organize the genome into structural domains, has a central role in gene control by facilitating or constraining interactions between genes and their regulatory elements1,2. In cancer cells, the disruption of CTCF binding at specific loci by somatic mutation3,4 or DNA hypermethylation5 results in the loss of loop anchors and consequent activation of oncogenes. By contrast, the germ-cell-specific paralogue of CTCF, BORIS (brother of the regulator of imprinted sites, also known as CTCFL)6, is overexpressed in several cancers7-9, but its contributions to the malignant phenotype remain unclear. Here we show that aberrant upregulation of BORIS promotes chromatin interactions in ALK-mutated, MYCN-amplified neuroblastoma10 cells that develop resistance to ALK inhibition. These cells are reprogrammed to a distinct phenotypic state during the acquisition of resistance, a process defined by the initial loss of MYCN expression followed by subsequent overexpression of BORIS and a concomitant switch in cellular dependence from MYCN to BORIS. The resultant BORIS-regulated alterations in chromatin looping lead to the formation of super-enhancers that drive the ectopic expression of a subset of proneural transcription factors that ultimately define the resistance phenotype. These results identify a previously unrecognized role of BORIS-to promote regulatory chromatin interactions that support specific cancer phenotypes.
Asunto(s)
Cromatina/genética , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/patología , Quinasa de Linfoma Anaplásico/antagonistas & inhibidores , Quinasa de Linfoma Anaplásico/genética , Animales , Factor de Unión a CCCTC/metabolismo , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Células HEK293 , Humanos , Ratones , Terapia Molecular Dirigida , Proteína Proto-Oncogénica N-Myc/genética , Neuroblastoma/enzimología , Neuroblastoma/genética , Fenotipo , Unión ProteicaRESUMEN
An Amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMEN
Most tumours have an aberrantly activated lipid metabolism1,2 that enables them to synthesize, elongate and desaturate fatty acids to support proliferation. However, only particular subsets of cancer cells are sensitive to approaches that target fatty acid metabolism and, in particular, fatty acid desaturation3. This suggests that many cancer cells contain an unexplored plasticity in their fatty acid metabolism. Here we show that some cancer cells can exploit an alternative fatty acid desaturation pathway. We identify various cancer cell lines, mouse hepatocellular carcinomas, and primary human liver and lung carcinomas that desaturate palmitate to the unusual fatty acid sapienate to support membrane biosynthesis during proliferation. Accordingly, we found that sapienate biosynthesis enables cancer cells to bypass the known fatty acid desaturation pathway that is dependent on stearoyl-CoA desaturase. Thus, only by targeting both desaturation pathways is the in vitro and in vivo proliferation of cancer cells that synthesize sapienate impaired. Our discovery explains metabolic plasticity in fatty acid desaturation and constitutes an unexplored metabolic rewiring in cancers.
Asunto(s)
Ácidos Grasos/química , Ácidos Grasos/metabolismo , Redes y Vías Metabólicas , Neoplasias/metabolismo , Neoplasias/patología , Animales , Línea Celular Tumoral , Membrana Celular/metabolismo , Proliferación Celular , Ácido Graso Desaturasas/metabolismo , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ácidos Oléicos/metabolismo , Palmitatos/metabolismo , Ácidos Palmíticos/metabolismo , Estearoil-CoA Desaturasa/metabolismoRESUMEN
Oncogenic mutations in the small GTPase Ras are highly prevalent in cancer, but an understanding of the vulnerabilities of these cancers is lacking. We undertook a genome-wide RNAi screen to identify synthetic lethal interactions with the KRAS oncogene. We discovered a diverse set of proteins whose depletion selectively impaired the viability of Ras mutant cells. Among these we observed a strong enrichment for genes with mitotic functions. We describe a pathway involving the mitotic kinase PLK1, the anaphase-promoting complex/cyclosome, and the proteasome that, when inhibited, results in prometaphase accumulation and the subsequent death of Ras mutant cells. Gene expression analysis indicates that reduced expression of genes in this pathway correlates with increased survival of patients bearing tumors with a Ras transcriptional signature. Our results suggest a previously underappreciated role for Ras in mitotic progression and demonstrate a pharmacologically tractable pathway for the potential treatment of cancers harboring Ras mutations.
Asunto(s)
Neoplasias del Colon/metabolismo , Mitosis , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo , Animales , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Femenino , Genoma Humano , Humanos , Ratones , Ratones Desnudos , Mutación , Trasplante de Neoplasias , Inhibidores de Proteasoma , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras) , Interferencia de ARN , Transducción de Señal , Trasplante Heterólogo , Quinasa Tipo Polo 1RESUMEN
Twenty-seven rosmarinic acid derivatives were synthesized, among which compound RA-N8 exhibited the most potent antibacterial ability. The minimum inhibition concentration of RA-N8 against both S. aureus (ATCC 29213) and MRSA (ATCC BAA41 and ATCC 43300) was found to be 6 µg/mL, and RA-N8 killed E. coli (ATCC 25922) at 3 µg/mL in the presence of polymyxin B nonapeptide (PMBN) which increased the permeability of E. coli. RA-N8 exhibited a weak hemolytic effect at the minimum inhibitory concentration. SYTOX Green assay, SEM, and LIVE/DEAD fluorescence staining assay proved that the mode of action of RA-N8 is targeting bacterial cell membranes. Furthermore, no resistance in wildtype S. aureus developed after incubation with RA-N8 for 20 passages. Cytotoxicity studies further demonstrated that RA-N8 is non-toxic to the human normal cell line (HFF1). RA-N8 also exerted potent inhibitory ability against biofilm formation of S. aureus and even collapsed the shaped biofilm.
Asunto(s)
Antibacterianos , Staphylococcus aureus Resistente a Meticilina , Humanos , Antibacterianos/química , Staphylococcus aureus , Ácido Rosmarínico , Escherichia coli , Relación Estructura-Actividad , Pruebas de Sensibilidad Microbiana , BiopelículasRESUMEN
We wish to correct two mutations in Supplementary Table 4 of this Letter. The NCI-H460 cell line was annotated as being mutant for TP53. NCI-H460 has been verified to be TP53 wild type by several sources1. The NCI-H2009 cell line was annotated as being mutant for PIK3CA. As annotated by COSMIC (ref. 24 of the original Letter) and CCLE (ref. 25 of the original Letter), the NCI-H2009 cell line has a mutation in PIK3C3, rather than PIK3CA. The cell line is wild type for PIK3CA. The Supplementary Information of this Amendment contains the corrected Supplementary Table 4. These errors do not affect our conclusions. The original Letter has not been corrected.
RESUMEN
N6-methyladenosine (m6A) modification of mRNA is emerging as an important regulator of gene expression that affects different developmental and biological processes, and altered m6A homeostasis is linked to cancer1-5. m6A modification is catalysed by METTL3 and enriched in the 3' untranslated region of a large subset of mRNAs at sites close to the stop codon5. METTL3 can promote translation but the mechanism and relevance of this process remain unknown1. Here we show that METTL3 enhances translation only when tethered to reporter mRNA at sites close to the stop codon, supporting a mechanism of mRNA looping for ribosome recycling and translational control. Electron microscopy reveals the topology of individual polyribosomes with single METTL3 foci in close proximity to 5' cap-binding proteins. We identify a direct physical and functional interaction between METTL3 and the eukaryotic translation initiation factor 3 subunit h (eIF3h). METTL3 promotes translation of a large subset of oncogenic mRNAs-including bromodomain-containing protein 4-that is also m6A-modified in human primary lung tumours. The METTL3-eIF3h interaction is required for enhanced translation, formation of densely packed polyribosomes and oncogenic transformation. METTL3 depletion inhibits tumorigenicity and sensitizes lung cancer cells to BRD4 inhibition. These findings uncover a mechanism of translation control that is based on mRNA looping and identify METTL3-eIF3h as a potential therapeutic target for patients with cancer.
Asunto(s)
Carcinogénesis , Factor 3 de Iniciación Eucariótica/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Metiltransferasas/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/química , ARN Mensajero/metabolismo , Animales , Línea Celular Tumoral , Ciclización , Femenino , Humanos , Neoplasias Pulmonares/metabolismo , Ratones , Ratones Desnudos , Conformación de Ácido Nucleico , Polirribosomas/química , Polirribosomas/metabolismo , Unión Proteica , ARN Mensajero/genéticaRESUMEN
Activating mutations in the phosphoinositide 3-kinase (PI3K) signaling pathway are frequently identified in cancer. To identify pathways that support PI3K oncogenesis, we performed a genome-wide RNAi screen in isogenic cell lines harboring wild-type or mutant PIK3CA to search for PI3K synthetic-lethal (SL) genes. A combined analysis of these results with a meta-analysis of two other large-scale RNAi screening data sets in PI3K mutant cancer cell lines converged on ribosomal protein translation and proteasomal protein degradation as critical nononcogene dependencies for PI3K-driven tumors. Genetic or pharmacologic inhibition of either pathway alone, but not together, selectively killed PI3K mutant tumor cells in an mTOR-dependent manner. The expression of ribosomal and proteasomal components was significantly up-regulated in primary human colorectal tumors harboring PI3K pathway activation. Importantly, a PI3K SL gene signature containing the top hits of the SL genes identified in our meta-analysis robustly predicted overall patient survival in colorectal cancer, especially among patients with tumors with an activated PI3K pathway. These results suggest that disruption of protein turnover homeostasis via ribosome or proteasome inhibition may be a novel treatment strategy for PI3K mutant human tumors.
Asunto(s)
Neoplasias Colorrectales/enzimología , Neoplasias Colorrectales/genética , Regulación Neoplásica de la Expresión Génica , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/genética , Animales , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/fisiopatología , Genómica , Células HCT116 , Células HEK293 , Humanos , Ratones , Mutación , Complejo de la Endopetidasa Proteasomal/genética , Ribosomas/genéticaRESUMEN
FtsQBL is a transmembrane protein complex in the divisome of Escherichia coli that plays a critical role in regulating cell division. Although extensive efforts have been made to investigate the interactions between the three involved proteins, FtsQ, FtsB, and FtsL, the detailed interaction mechanism is still poorly understood. In this study, we used hydrogen-deuterium exchange mass spectrometry to investigate these full-length proteins and their complexes. We also dissected the structural dynamic changes and the related binding interfaces within the complexes. Our data revealed that FtsB and FtsL interact at both the periplasmic and transmembrane regions to form a stable complex. Furthermore, the periplasmic region of FtsB underwent significant conformational changes. With the help of computational modeling, our results suggest that FtsBL complexation may bring the respective constriction control domains (CCDs) in close proximity. We show that when FtsBL adopts a coiled-coil structure, the CCDs are fixed at a vertical position relative to the membrane surface; thus, this conformational change may be essential for FtsBL's interaction with other divisome proteins. In the FtsQBL complex, intriguingly, we show only FtsB interacts with FtsQ at its C-terminal region, which stiffens a large area of the ß-domain of FtsQ. Consistent with this, we found the connection between the α- and ß-domains in FtsQ is also strengthened in the complex. Overall, the present study provides important experimental evidence detailing the local interactions between the full-length FtsB, FtsL, and FtsQ protein, as well as valuable insights into the roles of FtsQBL complexation in regulating divisome activity.
Asunto(s)
Proteínas de Ciclo Celular , Proteínas de Escherichia coli , Escherichia coli , Proteínas de la Membrana , Proteínas de Ciclo Celular/metabolismo , División Celular , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Conformación ProteicaRESUMEN
A cross-coupling reaction via the dehydrogenative route over heterogeneous solid atomic catalysts offers practical solutions toward an economical and sustainable elaboration of simple organic substrates. The current utilization of this technology is, however, hampered by limited molecular definition of many solid catalysts. Here, we report the development of Cu-M dual-atom catalysts (where M = Co, Ni, Cu, and Zn) supported on a hierarchical USY zeolite to mediate efficient dehydrogenative cross-coupling of unprotected phenols with amine partners. Over 80% isolated yields have been attained over Cu-Co-USY, which shows much superior reactivity when compared with our Cu1 and other Cu-M analogues. This amination reaction has hence involved simple and non-forceful reaction condition requirements. The superior reactivity can be attributed to (1) the specifically designed bimetallic Cu-Co active sites within the micropore for "co-adsorption-co-activation" of the reaction substrates and (2) the facile intracrystalline (meso/micropore) diffusion of the heterocyclic organic substrates. This study offers critical insights into the engineering of next-generation solid atomic catalysts with complex reaction steps.
RESUMEN
There is a paucity of population-based data detailing the incidence and survival of patients with soft tissue sarcoma (STS), in part due to the heterogeneity of disease and changes to classification. Here, the incidence and survival of all STS subtypes registered in England between 2013 and 2017 were analysed using cancer registry data held by the National Cancer Registration and Analysis Service. Age-standardised incidence rates were calculated per 1 000 000 using the 2013 European Standard Population. Net survival was computed using Brenner's alternative method, with the Ederer II estimator. Age-specific overall survival was assessed using Kaplan-Meier. The influence of age, sex, socioeconomic deprivation and diagnostic routes on survival was assessed using Cox proportional hazards modelling. In total, 19 717 patients were diagnosed with STS, an average of 3943 patients per year and representing approximately 0.8% of malignancies. The most common histological diagnoses were Gastrointestinal Stromal Tumours (GIST), leiomyosarcoma and undifferentiated sarcoma, accounting for 20.2%, 13.3% and 12.7% of all sarcomas, respectively. Five-year net survival for all malignant STS was 65.0%; and was lowest for patients with vascular tumours at 39%. Patients from most deprived cohorts had 23% greater chance of dying within 5 years than patients in least deprived areas. This population-based study has allowed us for the first time to define the incidence and survival rates of prevalent STS subtypes in England such as GIST, liposarcoma and leiomyosarcoma, as well as rare entities and groups with inferior outcome. This data is invaluable for service provision, benchmarking and addressing inequality.
Asunto(s)
Tumores del Estroma Gastrointestinal , Leiomiosarcoma , Sarcoma , Neoplasias de los Tejidos Blandos , Humanos , Incidencia , Sarcoma/patología , Neoplasias de los Tejidos Blandos/epidemiologíaRESUMEN
Histone modifications play crucial roles in transcriptional activation, and aberrant epigenetic changes are associated with oncogenesis. Lysine (K) acetyltransferases 5 (TIP60, also known as KAT5) is reportedly implicated in cancer development and maintenance, although its function in lung cancer remains controversial. Here we demonstrate that TIP60 knockdown in non-small cell lung cancer cell lines decreased tumor cell growth, migration, and invasion. Furthermore, analysis of a mouse lung cancer model with lung-specific conditional Tip60 knockout revealed suppressed tumor formation relative to controls, but no apparent effects on normal lung homeostasis. RNA-seq and ChIP-seq analyses of inducible TIP60 knockdown H1975 cells relative to controls revealed transglutaminase enzyme (TGM5) as downstream of TIP60. Investigation of a connectivity map database identified several candidate compounds that decrease TIP60 mRNA, one that suppressed tumor growth in cell culture and in vivo. In addition, TH1834, a TIP60 acetyltransferase inhibitor, showed comparable antitumor effects in cell culture and in vivo. Taken together, suppression of TIP60 activity shows tumor-specific efficacy against lung cancer, with no overt effect on normal tissues. Our work suggests that targeting TIP60 could be a promising approach to treating lung cancer.