Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
BMC Pulm Med ; 17(1): 141, 2017 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-29149880

RESUMEN

BACKGROUND: Clinical guidelines specify that diagnosis of interstitial pulmonary fibrosis (IPF) requires identification of usual interstitial pneumonia (UIP) pattern. While UIP can be identified by high resolution CT of the chest, the results are often inconclusive, making surgical lung biopsy necessary to reach a definitive diagnosis (Raghu et al., Am J Respir Crit Care Med 183(6):788-824, 2011). The Envisia genomic classifier differentiates UIP from non-UIP pathology in transbronchial biopsies (TBB), potentially allowing patients to avoid an invasive procedure (Brown et al., Am J Respir Crit Care Med 195:A6792, 2017). To ensure patient safety and efficacy, a laboratory developed test (LDT) must meet strict regulatory requirements for accuracy, reproducibility and robustness. The analytical characteristics of the Envisia test are assessed and reported here. METHODS: The Envisia test utilizes total RNA extracted from TBB samples to perform Next Generation RNA Sequencing. The gene count data from 190 genes are then input to the Envisia genomic classifier, a machine learning algorithm, to output either a UIP or non-UIP classification result. We characterized the stability of RNA in TBBs during collection and shipment, and evaluated input RNA mass and proportions on the limit of detection of UIP. We evaluated potentially interfering substances such as blood and genomic DNA. Intra-run, inter-run, and inter-laboratory reproducibility of test results were also characterized. RESULTS: RNA content within TBBs preserved in RNAprotect is stable for up to 14 days with no detectable change in RNA quality. The Envisia test is tolerant to variation in RNA input (5 to 30 ng), with no impact on classifier results. The Envisia test can tolerate dilution of non-UIP and UIP classification signals at the RNA level by up to 60% and 20%, respectively. Analytical specificity studies utilizing UIP and non-UIP samples mixed with genomic DNA (up to 30% relative input) demonstrated no impact to classifier results. The Envisia test tolerates up to 22% of blood contamination, well beyond the level observed in TBBs. The test is reproducible from RNA extraction through to Envisia test result (standard deviation of 0.20 for Envisia classification scores on > 7-unit scale). CONCLUSIONS: The Envisia test demonstrates the robust analytical performance required of an LDT. Envisia can be used to inform the diagnoses of patients with suspected IPF.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Enfermedades Pulmonares Intersticiales/genética , Enfermedades Pulmonares Intersticiales/patología , Pulmón/patología , Análisis de Secuencia de ARN , Algoritmos , Biopsia , Broncoscopía , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Enfermedades Pulmonares Intersticiales/diagnóstico , Aprendizaje Automático , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
2.
BMC Bioinformatics ; 17 Suppl 1: 6, 2016 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-26818556

RESUMEN

BACKGROUND: Thyroid carcinomas are known to harbor oncogenic driver mutations and advances in sequencing technology now allow the detection of these in fine needle aspiration biopsies (FNA). Recent work by The Cancer Genome Atlas (TCGA) Research Network has expanded the number of genetic alterations detected in papillary thyroid carcinomas (PTC). We sought to investigate the prevalence of these and other genetic alterations in diverse subtypes of thyroid nodules beyond PTC, including a variety of samples with benign histopathology. This is the first clinical evaluation of a large panel of TCGA-reported genomic alterations in thyroid FNAs. RESULTS: In FNAs, genetic alterations were detected in 19/44 malignant samples (43% sensitivity) and in 7/44 histopathology benign samples (84% specificity). Overall, after adding a cohort of tissue samples, 38/76 (50%) of histopathology malignant samples were found to harbor a genetic alteration, while 15/75 (20%) of benign samples were also mutated. The most frequently mutated malignant subtypes were medullary thyroid carcinoma (9/12, 75%) and PTC (14/30, 47%). Additionally, follicular adenoma, a benign subtype of thyroid neoplasm, was also found to harbor mutations (12/29, 41%). Frequently mutated genes in malignant samples included BRAF (20/76, 26%) and RAS (9/76, 12%). Of the TSHR variants detected, (6/7, 86%) were in benign nodules. In a direct comparison of the same FNA also tested by an RNA-based gene expression classifier (GEC), the sensitivity of genetic alterations alone was 42%, compared to the 91% sensitivity achieved by the GEC. The specificity based only on genetic alterations was 84%, compared to 77% specificity with the GEC. CONCLUSIONS: While the genomic landscape of all thyroid neoplasm subtypes will inevitably be elucidated, caution should be used in the early adoption of published mutations as the sole predictor of malignancy in thyroid. The largest set of such mutations known to date detects only a portion of thyroid carcinomas in preoperative FNAs in our cohort and thus is not sufficient to rule out cancer. Due to the finding that variants are also found in benign nodules, testing only GEC suspicious nodules may be helpful in avoiding false positives and altering the extent of treatment when selected mutations are found.


Asunto(s)
Adenocarcinoma Folicular/diagnóstico , Carcinoma Neuroendocrino/diagnóstico , Carcinoma/diagnóstico , Fusión Génica/genética , Variación Genética/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Neoplasias de la Tiroides/diagnóstico , Adenocarcinoma Folicular/genética , Biomarcadores de Tumor/genética , Biopsia con Aguja Fina , Carcinoma/genética , Carcinoma Neuroendocrino/genética , Carcinoma Papilar , Humanos , Estudios Prospectivos , Curva ROC , Análisis de Secuencia de ARN/métodos , Cáncer Papilar Tiroideo , Neoplasias de la Tiroides/genética , Nódulo Tiroideo/diagnóstico , Nódulo Tiroideo/genética
3.
Thyroid ; 26(11): 1573-1580, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27605259

RESUMEN

BACKGROUND: The aim of this study was to demonstrate the analytical validity of an RNA classifier for medullary thyroid carcinoma (MTC). METHODS: Fresh-frozen tissue specimens were obtained from commercial sources, and MTC diagnoses were confirmed by histopathology review. De-identified patient fine-needle aspiration biopsies (FNABs) and whole blood from normal donors were obtained. Total RNA was extracted, amplified, and hybridized to custom microarrays for gene expression analysis. Gene expression data were normalized and classified via a machine learning algorithm. Positive control materials were produced from MTC tissues and tested across multiple experiments and laboratories. Twenty-seven MTC tissue specimens were used to evaluate the sensitivity of the MTC classifier. Gene expression data from tissues and FNABs were used to model classifier response to mixtures of MTC samples with normal thyroid tissue, a benign thyroid nodule, a Hürthle cell adenoma, and whole blood. Select mixture conditions were confirmed in vitro. Assay tolerance to RNA input variation (5-25 ng) and genomic DNA contamination (30% by mass) was evaluated. The intra- and inter-run reproducibility and inter-laboratory accuracy of MTC classifier results were characterized. RESULTS: The MTC classifier sensitivity of 96.3% [confidence interval 81.0-99.9%] was determined retrospectively using 27 MTC confirmed tissue specimens. One false-negative result in a necrotic tissue implicated sample necrosis in reduced classifier sensitivity. Dilution modeling of MTC samples with normal or benign tissues showed consistent detection of MTC down to 20% sample proportions, with in vitro confirmation of 20% analytical sensitivity. Classifier tolerance to RNA input variation (5-25 ng), genomic DNA contamination (30% by mass), and an interfering substance (blood) was demonstrated with 100% accurate classifier results under all tested conditions. The maximum observed run-to-run score difference for a single FNAB sample was ∼1 unit compared with the average score difference between 38 MTC and non-MTC FNABs of ∼32 units. MTC classifier results for 20 tissues processed from total RNA in two different laboratories showed 100% concordance. CONCLUSIONS: The MTC classifier, offered as part of the routine molecular testing of cytology-indeterminate thyroid nodules, demonstrates robust analytical sensitivity, specificity, accuracy, and reproducibility.


Asunto(s)
Carcinoma Medular/metabolismo , Carcinoma Neuroendocrino/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas de Neoplasias/metabolismo , ARN Neoplásico/metabolismo , Glándula Tiroides/metabolismo , Neoplasias de la Tiroides/metabolismo , Adulto , Anciano , Biopsia con Aguja Fina , Carcinoma Medular/sangre , Carcinoma Medular/diagnóstico , Carcinoma Medular/patología , Carcinoma Neuroendocrino/sangre , Carcinoma Neuroendocrino/diagnóstico , Carcinoma Neuroendocrino/patología , Biología Computacional , Sistemas Especialistas , Femenino , Perfilación de la Expresión Génica , Humanos , Límite de Detección , Aprendizaje Automático , Masculino , Persona de Mediana Edad , Técnicas de Diagnóstico Molecular , Proteínas de Neoplasias/genética , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Glándula Tiroides/patología , Neoplasias de la Tiroides/sangre , Neoplasias de la Tiroides/diagnóstico , Neoplasias de la Tiroides/patología , Bancos de Tejidos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA