Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Cell ; 174(6): 1450-1464.e23, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30100184

RESUMEN

Synapses are fundamental units of communication in the brain. The prototypical synapse-organizing complex neurexin-neuroligin mediates synapse development and function and is central to a shared genetic risk pathway in autism and schizophrenia. Neurexin's role in synapse development is thought to be mediated purely by its protein domains, but we reveal a requirement for a rare glycan modification. Mice lacking heparan sulfate (HS) on neurexin-1 show reduced survival, as well as structural and functional deficits at central synapses. HS directly binds postsynaptic partners neuroligins and LRRTMs, revealing a dual binding mode involving intrinsic glycan and protein domains for canonical synapse-organizing complexes. Neurexin HS chains also bind novel ligands, potentially expanding the neurexin interactome to hundreds of HS-binding proteins. Because HS structure is heterogeneous, our findings indicate an additional dimension to neurexin diversity, provide a molecular basis for fine-tuning synaptic function, and open therapeutic directions targeting glycan-binding motifs critical for brain development.


Asunto(s)
Heparitina Sulfato/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Sinapsis/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Unión al Calcio , Moléculas de Adhesión Celular Neuronal/antagonistas & inhibidores , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Drosophila , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Femenino , Glicopéptidos/análisis , Heparitina Sulfato/química , Humanos , Proteínas de la Membrana , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso , Moléculas de Adhesión de Célula Nerviosa/antagonistas & inhibidores , Moléculas de Adhesión de Célula Nerviosa/genética , Neuronas/citología , Neuronas/metabolismo , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ratas , Alineación de Secuencia
2.
Cell ; 168(3): 413-426.e12, 2017 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-28129540

RESUMEN

The fovea is a specialized region of the retina that dominates the visual perception of primates by providing high chromatic and spatial acuity. While the foveal and peripheral retina share a similar core circuit architecture, they exhibit profound functional differences whose mechanisms are unknown. Using intracellular recordings and structure-function analyses, we examined the cellular and synaptic underpinnings of the primate fovea. Compared to peripheral vision, the fovea displays decreased sensitivity to rapid variations in light inputs; this difference is reflected in the responses of ganglion cells, the output cells of the retina. Surprisingly, and unlike in the periphery, synaptic inhibition minimally shaped the responses of foveal midget ganglion cells. This difference in inhibition cannot however, explain the differences in the temporal sensitivity of foveal and peripheral midget ganglion cells. Instead, foveal cone photoreceptors themselves exhibited slower light responses than peripheral cones, unexpectedly linking cone signals to perceptual sensitivity.


Asunto(s)
Fóvea Central/fisiología , Macaca/fisiología , Células Fotorreceptoras Retinianas Conos/fisiología , Percepción Visual , Animales , Cinética , Células Fotorreceptoras de Vertebrados/fisiología , Células Ganglionares de la Retina/fisiología , Sinapsis
3.
Cell ; 151(1): 9-11, 2012 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-23021210

RESUMEN

Neurons need to alter their response to a given stimulus over time in order for the animal to modify its behavior within a changing environment. Chen et al. now demonstrate that neuronal structure and function are altered coordinately by the history of the cell's activity through an unexpected molecular pathway.

4.
PLoS Comput Biol ; 16(12): e1008437, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33320887

RESUMEN

The outer epithelial layer of zebrafish retinae contains a crystalline array of cone photoreceptors, called the cone mosaic. As this mosaic grows by mitotic addition of new photoreceptors at the rim of the hemispheric retina, topological defects, called "Y-Junctions", form to maintain approximately constant cell spacing. The generation of topological defects due to growth on a curved surface is a distinct feature of the cone mosaic not seen in other well-studied biological patterns like the R8 photoreceptor array in the Drosophila compound eye. Since defects can provide insight into cell-cell interactions responsible for pattern formation, here we characterize the arrangement of cones in individual Y-Junction cores as well as the spatial distribution of Y-junctions across entire retinae. We find that for individual Y-junctions, the distribution of cones near the core corresponds closely to structures observed in physical crystals. In addition, Y-Junctions are organized into lines, called grain boundaries, from the retinal center to the periphery. In physical crystals, regardless of the initial distribution of defects, defects can coalesce into grain boundaries via the mobility of individual particles. By imaging in live fish, we demonstrate that grain boundaries in the cone mosaic instead appear during initial mosaic formation, without requiring defect motion. Motivated by this observation, we show that a computational model of repulsive cell-cell interactions generates a mosaic with grain boundaries. In contrast to paradigmatic models of fate specification in mostly motionless cell packings, this finding emphasizes the role of cell motion, guided by cell-cell interactions during differentiation, in forming biological crystals. Such a route to the formation of regular patterns may be especially valuable in situations, like growth on a curved surface, where the resulting long-ranged, elastic, effective interactions between defects can help to group them into grain boundaries.


Asunto(s)
Células Fotorreceptoras Retinianas Conos/metabolismo , Pez Cebra/anatomía & histología , Animales , Comunicación Celular , Diferenciación Celular , Simulación por Computador , Pez Cebra/crecimiento & desarrollo
5.
Nat Methods ; 13(6): 485-8, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27064647

RESUMEN

Expansion microscopy is a technique in which fluorophores on fixed specimens are linked to a swellable polymer that is physically expanded to enable super-resolution microscopy with ordinary microscopes. We have developed and characterized new methods for linking fluorophores to the polymer that now enable expansion microscopy with conventional fluorescently labeled antibodies and fluorescent proteins. Our methods simplify the procedure and expand the palette of compatible labels, allowing rapid dissemination of the technique.


Asunto(s)
Anticuerpos Monoclonales , Aumento de la Imagen/métodos , Proteínas Luminiscentes , Microscopía Confocal/métodos , Microscopía Fluorescente/métodos , Animales , Encéfalo/ultraestructura , Línea Celular , Proteínas Luminiscentes/genética , Ratones Endogámicos C57BL , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Coloración y Etiquetado , Transfección
6.
Brain ; 141(7): 1963-1980, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29931057

RESUMEN

Dendrite pathology and synapse disassembly are critical features of chronic neurodegenerative diseases. In spite of this, the capacity of injured neurons to regenerate dendrites has been largely ignored. Here, we show that, upon axonal injury, retinal ganglion cells undergo rapid dendritic retraction and massive synapse loss that preceded neuronal death. Human recombinant insulin, administered as eye drops or systemically after dendritic arbour shrinkage and prior to cell loss, promoted robust regeneration of dendrites and successful reconnection with presynaptic targets. Insulin-mediated regeneration of excitatory postsynaptic sites on retinal ganglion cell dendritic processes increased neuronal survival and rescued light-triggered retinal responses. Further, we show that axotomy-induced dendrite retraction triggered substantial loss of the mammalian target of rapamycin (mTOR) activity exclusively in retinal ganglion cells, and that insulin fully reversed this response. Targeted loss-of-function experiments revealed that insulin-dependent activation of mTOR complex 1 (mTORC1) is required for new dendritic branching to restore arbour complexity, while complex 2 (mTORC2) drives dendritic process extension thus re-establishing field area. Our findings demonstrate that neurons in the mammalian central nervous system have the intrinsic capacity to regenerate dendrites and synapses after injury, and provide a strong rationale for the use of insulin and/or its analogues as pro-regenerative therapeutics for intractable neurodegenerative diseases including glaucoma.


Asunto(s)
Dendritas/efectos de los fármacos , Regeneración Nerviosa/fisiología , Sinapsis/patología , Animales , Axones/metabolismo , Sistema Nervioso Central/metabolismo , Dendritas/metabolismo , Dendritas/fisiología , Glaucoma , Insulina/fisiología , Insulina/uso terapéutico , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Ratones , Regeneración Nerviosa/efectos de los fármacos , Nervio Óptico/citología , Traumatismos del Nervio Óptico/tratamiento farmacológico , Retina/lesiones , Células Ganglionares de la Retina/citología , Transducción de Señal , Sinapsis/efectos de los fármacos , Sinapsis/fisiología , Serina-Treonina Quinasas TOR/metabolismo
7.
Proc Natl Acad Sci U S A ; 112(41): 12840-5, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26420868

RESUMEN

Neuronal output is modulated by inhibition onto both dendrites and axons. It is unknown whether inhibitory synapses at these two cellular compartments of an individual neuron are regulated coordinately or separately during in vivo development. Because neurotransmission influences synapse maturation and circuit development, we determined how loss of inhibition affects the expression of diverse types of inhibitory receptors on the axon and dendrites of mouse retinal bipolar cells. We found that axonal GABA but not glycine receptor expression depends on neurotransmission. Importantly, axonal and dendritic GABAA receptors comprise distinct subunit compositions that are regulated differentially by GABA release: Axonal GABAA receptors are down-regulated but dendritic receptors are up-regulated in the absence of inhibition. The homeostatic increase in GABAA receptors on bipolar cell dendrites is pathway-specific: Cone but not rod bipolar cell dendrites maintain an up-regulation of receptors in the transmission deficient mutants. Furthermore, the bipolar cell GABAA receptor alterations are a consequence of impaired vesicular GABA release from amacrine but not horizontal interneurons. Thus, inhibitory neurotransmission regulates in vivo postsynaptic maturation of inhibitory synapses with contrasting modes of action specific to synapse type and location.


Asunto(s)
Axones/metabolismo , Dendritas/metabolismo , Receptores de GABA-A/metabolismo , Células Bipolares de la Retina/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Animales , Dendritas/genética , Ratones , Ratones Transgénicos , Receptores de GABA-A/genética , Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Sinapsis/genética
8.
J Neurosci ; 36(35): 9240-52, 2016 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-27581463

RESUMEN

UNLABELLED: Key issues concerning ganglion cell type-specific loss and synaptic changes in animal models of experimental glaucoma remain highly debated. Importantly, changes in the structure and function of various RGC types that occur early, within 14 d after acute, transient intraocular pressure elevation, have not been previously assessed. Using biolistic transfection of individual RGCs and multielectrode array recordings to measure light responses in mice, we examined the effects of laser-induced ocular hypertension on the structure and function of a subset of RGCs. Among the α-like RGCs studied, αOFF-transient RGCs exhibited higher rates of cell death, with corresponding reductions in dendritic area, dendritic complexity, and synapse density. Functionally, OFF-transient RGCs displayed decreases in spontaneous activity and receptive field size. In contrast, neither αOFF-sustained nor αON-sustained RGCs displayed decreases in light responses, although they did exhibit a decrease in excitatory postsynaptic sites, suggesting that synapse loss may be one of the earliest signs of degeneration. Interestingly, presynaptic ribbon density decreased to a greater degree in the OFF sublamina of the inner plexiform layer, corroborating the hypothesis that RGCs with dendrites stratifying in the OFF sublamina may be damaged early. Indeed, OFF arbors of ON-OFF RGCs lose complexity more rapidly than ON arbors. Our results reveal type-specific differences in RGC responses to injury with a selective vulnerability of αOFF-transient RGCs, and furthermore, an increased susceptibility of synapses in the OFF sublamina. The selective vulnerability of specific RGC types offers new avenues for the design of more sensitive functional tests and targeted neuroprotection. SIGNIFICANCE STATEMENT: Conflicting reports regarding the selective vulnerability of specific retinal ganglion cell (RGC) types in glaucoma exist. We examine, for the first time, the effects of transient intraocular pressure elevation on the structure and function of various RGC types. Among the α-like RGCs studied, αOFF-transient RGCs are the most vulnerable to transient transient intraocular pressure elevation as measured by rates of cell death, morphologic alterations in dendrites and synapses, and physiological dysfunction. Specifically, we found that presynaptic ribbon density decreased to a greater degree in the OFF sublamina of the inner plexiform layer. Our results suggest selective vulnerability both of specific types of RGCs and of specific inner plexiform layer sublaminae, opening new avenues for identifying novel diagnostic and treatment targets in glaucoma.


Asunto(s)
Presión Intraocular/fisiología , Hipertensión Ocular/patología , Células Ganglionares de la Retina/patología , Sinapsis/patología , Oxidorreductasas de Alcohol/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Colina O-Acetiltransferasa/metabolismo , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Homólogo 4 de la Proteína Discs Large , Potenciales Evocados/fisiología , Femenino , Guanilato-Quinasas/metabolismo , Presión Intraocular/genética , Rayos Láser/efectos adversos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Proteínas de Neurofilamentos , Hipertensión Ocular/etiología , Estimulación Luminosa , Células Ganglionares de la Retina/fisiología , Estadísticas no Paramétricas , Sinapsis/fisiología , Factores de Tiempo , Transducción Genética
9.
Proc Natl Acad Sci U S A ; 110(37): 15109-14, 2013 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-23980162

RESUMEN

Proper functioning of sensory systems requires the generation of appropriate numbers and proportions of neuronal subtypes that encode distinct information. Perception of color relies on signals from multiple cone photoreceptor types. In cone-dominated retinas, each cone expresses a single opsin type with peak sensitivity to UV, long (L) (red), medium (M) (green), or short (S) (blue) wavelengths. The modes of cell division generating distinct cone types are unknown. We report here a mechanism whereby zebrafish cone photoreceptors of the same type are produced by symmetric division of dedicated precursors. Transgenic fish in which the thyroid hormone receptor ß2 (trß2) promoter drives fluorescent protein expression before L-cone precursors themselves are produced permitted tracking of their division in vivo. Every L cone in a local region resulted from the terminal division of an L-cone precursor, suggesting that such divisions contribute significantly to L-cone production. Analysis of the fate of isolated pairs of cones and time-lapse observations suggest that other cone types can also arise by symmetric terminal divisions. Such divisions of dedicated precursors may help to rapidly attain the final numbers and proportions of cone types (L > M, UV > S) in zebrafish larvae. Loss- and gain-of-function experiments show that L-opsin expression requires trß2 activity before cone differentiation. Ectopic expression of trß2 after cone differentiation produces cones with mixed opsins. Temporal differences in the onset of trß2 expression could explain why some species have mixed, and others have pure, cone types.


Asunto(s)
Opsinas de los Conos/metabolismo , Células Fotorreceptoras Retinianas Conos/citología , Pez Cebra/crecimiento & desarrollo , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Diferenciación Celular , División Celular , Linaje de la Célula , Opsinas de los Conos/genética , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Larva/citología , Larva/crecimiento & desarrollo , Larva/metabolismo , Proteínas Luminiscentes/genética , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Proteínas Recombinantes/genética , Células Fotorreceptoras Retinianas Conos/clasificación , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Madre/citología , Células Madre/metabolismo , Receptores beta de Hormona Tiroidea/antagonistas & inhibidores , Receptores beta de Hormona Tiroidea/genética , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
10.
J Biol Chem ; 289(42): 29350-64, 2014 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-25190809

RESUMEN

Synapses, the basic units of communication in the brain, require complex molecular machinery for neurotransmitter release and reception. Whereas numerous components of excitatory postsynaptic sites have been identified, relatively few proteins are known that function at inhibitory postsynaptic sites. One such component is neuroligin-2 (NL2), an inhibitory synapse-specific cell surface protein that functions in cell adhesion and synaptic organization via binding to neurexins. In this study, we used a transgenic tandem affinity purification and mass spectrometry strategy to isolate and characterize NL2-associated complexes. Complexes purified from brains of transgenic His6-FLAG-YFP-NL2 mice showed enrichment in the Gene Ontology terms cell-cell signaling and synaptic transmission relative to complexes purified from wild type mice as a negative control. In addition to expected components including GABA receptor subunits and gephyrin, several novel proteins were isolated in association with NL2. Based on the presence of multiple components involved in trafficking and endocytosis, we showed that NL2 undergoes dynamin-dependent endocytosis in response to soluble ligand and colocalizes with VPS35 retromer in endosomes. Inhibitory synapses in brain also present a particular challenge for imaging. Whereas excitatory synapses on spines can be imaged with a fluorescent cell fill, inhibitory synapses require a molecular tag. We find the His6-FLAG-YFP-NL2 to be a suitable tag, with the unamplified YFP signal localizing appropriately to inhibitory synapses in multiple brain regions including cortex, hippocampus, thalamus, and basal ganglia. Altogether, we characterize NL2-associated complexes, demonstrate regulated trafficking of NL2, and provide tools for further proteomic and imaging studies of inhibitory synapses.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteómica/métodos , Sinapsis/metabolismo , Animales , Encéfalo/metabolismo , Células COS , Chlorocebus aethiops , Endocitosis , Hipocampo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Inhibición Neural/fisiología , Neuronas/metabolismo , Transporte de Proteínas/genética , Proteoma , Transmisión Sináptica/fisiología , Transgenes
11.
Nature ; 460(7258): 1016-20, 2009 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-19693082

RESUMEN

Activity is thought to guide the patterning of synaptic connections in the developing nervous system. Specifically, differences in the activity of converging inputs are thought to cause the elimination of synapses from less active inputs and increase connectivity with more active inputs. Here we present findings that challenge the generality of this notion and offer a new view of the role of activity in synapse development. To imbalance neurotransmission from different sets of inputs in vivo, we generated transgenic mice in which ON but not OFF types of bipolar cells in the retina express tetanus toxin (TeNT). During development, retinal ganglion cells (RGCs) select between ON and OFF bipolar cell inputs (ON or OFF RGCs) or establish a similar number of synapses with both on separate dendritic arborizations (ON-OFF RGCs). In TeNT retinas, ON RGCs correctly selected the silenced ON bipolar cell inputs over the transmitting OFF bipolar cells, but were connected with them through fewer synapses at maturity. Time-lapse imaging revealed that this was caused by a reduced rate of synapse formation rather than an increase in synapse elimination. Similarly, TeNT-expressing ON bipolar cell axons generated fewer presynaptic active zones. The remaining active zones often recruited multiple, instead of single, synaptic ribbons. ON-OFF RGCs in TeNT mice maintained convergence of ON and OFF bipolar cells inputs and had fewer synapses on their ON arbor without changes to OFF arbor synapses. Our results reveal an unexpected and remarkably selective role for activity in circuit development in vivo, regulating synapse formation but not elimination, affecting synapse number but not dendritic or axonal patterning, and mediating independently the refinement of connections from parallel (ON and OFF) processing streams even where they converge onto the same postsynaptic cell.


Asunto(s)
Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Animales , Axones/metabolismo , Dendritas/metabolismo , Femenino , Ácido Glutámico/metabolismo , Masculino , Ratones , Ratones Transgénicos , Receptores de Ácido Kaínico/genética , Receptores de Ácido Kaínico/metabolismo , Células Bipolares de la Retina/citología , Células Bipolares de la Retina/metabolismo , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/metabolismo , Toxina Tetánica/genética , Toxina Tetánica/metabolismo , Receptor de Ácido Kaínico GluK2
12.
J Neurosci ; 33(44): 17444-57, 2013 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-24174678

RESUMEN

Intraocular pressure (IOP) elevation is a principal risk factor for glaucoma. Using a microbead injection technique to chronically raise IOP for 15 or 30 d in mice, we identified the early changes in visual response properties of different types of retinal ganglion cells (RGCs) and correlated these changes with neuronal morphology before cell death. Microbead-injected eyes showed reduced optokinetic tracking as well as cell death. In such eyes, multielectrode array recordings revealed that four RGC types show diverse alterations in their light responses upon IOP elevation. OFF-transient RGCs exhibited a more rapid decline in both structural and functional organizations compared with other RGCs. In contrast, although the light-evoked responses of OFF-sustained RGCs were perturbed, the dendritic arbor of this cell type remained intact. ON-transient and ON-sustained RGCs had normal functional receptive field sizes but their spontaneous and light-evoked firing rates were reduced. ON- and OFF-sustained RGCs lost excitatory synapses across an otherwise structurally normal dendritic arbor. Together, our observations indicate that there are changes in spontaneous activity and light-evoked responses in RGCs before detectable dendritic loss. However, when dendrites retract, we found corresponding changes in receptive field center size. Importantly, the effects of IOP elevation are not uniformly manifested in the structure and function of diverse RGC populations, nor are distinct RGC types perturbed within the same time-frame by such a challenge.


Asunto(s)
Modelos Animales de Enfermedad , Progresión de la Enfermedad , Glaucoma/patología , Glaucoma/fisiopatología , Células Ganglionares de la Retina/patología , Células Ganglionares de la Retina/fisiología , Potenciales de Acción/fisiología , Animales , Muerte Celular/fisiología , Femenino , Presión Intraocular/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Estimulación Luminosa/métodos , Células Fotorreceptoras de Invertebrados/patología , Células Fotorreceptoras de Invertebrados/fisiología , Distribución Aleatoria
13.
J Physiol ; 592(22): 4809-23, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25172948

RESUMEN

The visual system has often been thought of as a parallel processor because distinct regions of the brain process different features of visual information. However, increasing evidence for convergence and divergence of circuit connections, even at the level of the retina where visual information is first processed, chips away at a model of dedicated and distinct pathways for parallel information flow. Instead, our current understanding is that parallel channels may emerge, not from exclusive microcircuits for each channel, but from unique combinations of microcircuits. This review depicts diagrammatically the current knowledge and remaining puzzles about the retinal circuit with a focus on the mouse retina. Advances in techniques for labelling cells and genetic manipulations have popularized the use of transgenic mice. We summarize evidence gained from serial electron microscopy, electrophysiology and light microscopy to illustrate the wiring patterns in mouse retina. We emphasize the need to explore proposed retinal connectivity using multiple methods to verify circuits both structurally and functionally.


Asunto(s)
Conectoma , Retina/fisiología , Animales , Ratones , Imagen Óptica , Retina/citología , Vías Visuales/fisiología
14.
Nat Commun ; 15(1): 599, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238324

RESUMEN

In early sensory systems, cell-type diversity generally increases from the periphery into the brain, resulting in a greater heterogeneity of responses to the same stimuli. Surround suppression is a canonical visual computation that begins within the retina and is found at varying levels across retinal ganglion cell types. Our results show that heterogeneity in the level of surround suppression occurs subcellularly at bipolar cell synapses. Using single-cell electrophysiology and serial block-face scanning electron microscopy, we show that two retinal ganglion cell types exhibit very different levels of surround suppression even though they receive input from the same bipolar cell types. This divergence of the bipolar cell signal occurs through synapse-specific regulation by amacrine cells at the scale of tens of microns. These findings indicate that each synapse of a single bipolar cell can carry a unique visual signal, expanding the number of possible functional channels at the earliest stages of visual processing.


Asunto(s)
Retina , Células Ganglionares de la Retina , Animales , Ratones , Células Ganglionares de la Retina/fisiología , Células Amacrinas/fisiología , Sinapsis/fisiología
15.
J Neurosci ; 32(30): 10306-17, 2012 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-22836264

RESUMEN

Sensory circuits use common strategies, such as convergence and divergence, typically at different synapses, to pool or distribute inputs. Inputs from different presynaptic cell types converge onto a common postsynaptic cell, acting together to shape neuronal output (Klausberger and Somogyi, 2008). Also, individual presynaptic cells contact several postsynaptic cell types, generating divergence of signals. Attaining such complex wiring patterns relies on the orchestration of many events across development, including axonal and dendritic growth and synapse formation and elimination (reviewed by Waites et al., 2005; Sanes and Yamagata, 2009). Recent work has focused on how distinct presynaptic cell types form stereotypic connections with an individual postsynaptic cell (Morgan et al., 2011; Williams et al., 2011), but how a single presynaptic cell type diverges to form distinct wiring patterns with multiple postsynaptic cell types during development remains unexplored. Here we take advantage of the compactness of the visual system's first synapse to observe development of such a circuit in mouse retina. By imaging three types of postsynaptic bipolar cells and their common photoreceptor targets across development, we found that distinct bipolar cell types engage in disparate dendritic growth behaviors, exhibit targeted or exploratory approaches to contact photoreceptors, and adhere differently to the synaptotropic model of establishing synaptic territories. Furthermore each type establishes its final connectivity patterns with the same afferents on separate time scales. We propose that such differences in strategy and timeline could facilitate the division of common inputs among multiple postsynaptic cell types to create parallel circuits with diverse function.


Asunto(s)
Axones/fisiología , Dendritas/fisiología , Neuronas Retinianas/fisiología , Sinapsis/fisiología , Vías Visuales/fisiología , Animales , Ratones , Ratones Transgénicos , Retina/citología , Retina/fisiología , Neuronas Retinianas/citología , Vías Visuales/citología
16.
Bioessays ; 33(1): 61-72, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21110347

RESUMEN

In the adult nervous system, chemical neurotransmission between neurons is essential for information processing. However, neurotransmission is also important for patterning circuits during development, but its precise roles have yet to be identified, and some remain highly debated. Here, we highlight viewpoints that have come to be widely accepted or still challenged. We discuss how distinct techniques and model systems employed to probe the developmental role of neurotransmission may reconcile disparate ideas. We underscore how the effects of perturbing neurotransmission during development vary with model systems, the stage of development when transmission is altered, the nature of the perturbation, and how connectivity is assessed. Based on findings in circuits with connectivity arranged in layers, we raise the possibility that there exist constraints in neuronal network design that limit the role of neurotransmission. We propose that activity-dependent mechanisms are effective in refining connectivity patterns only when inputs from different cells are close enough, spatially, to influence each other's outcome.


Asunto(s)
Neuronas , Transmisión Sináptica , Adulto , Bioensayo , Redes Reguladoras de Genes/fisiología , Humanos , Modelos Biológicos , Sistema Nervioso/metabolismo , Neuronas/fisiología , Células Fotorreceptoras de Vertebrados/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología
17.
Neuron ; 56(4): 597-603, 2007 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-18031679

RESUMEN

Symmetric cell divisions have been proposed to rapidly increase neuronal number late in neurogenesis, but how critical this mode of division is to establishing a specific neuronal layer is unknown. Using in vivo time-lapse imaging methods, we discovered that in the laminated zebrafish retina, the horizontal cell (HC) layer forms quickly during embryonic development upon division of a precursor cell population. The precursor cells morphologically resemble immature, postmitotic HCs and express HC markers such as ptf1a and Prox1 prior to division. These precursors undergo nonapical symmetric division at the laminar location where mature HCs contact photoreceptors. Strikingly, the precursor cell type we observed generates exclusively HCs. We have thus identified a dedicated HC precursor, and our findings suggest a mechanism of neuronal layer formation whereby the location of mitosis could facilitate rapid contact between synaptic partners.


Asunto(s)
Vías Nerviosas/citología , Vías Nerviosas/embriología , Retina/embriología , Células Horizontales de la Retina/citología , Células Horizontales de la Retina/embriología , Células Madre/citología , Animales , Biomarcadores/metabolismo , Tipificación del Cuerpo/fisiología , Diferenciación Celular/fisiología , División Celular/fisiología , Forma de la Célula/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas de Homeodominio/metabolismo , Proteínas Luminiscentes/genética , Microscopía Confocal , Vías Nerviosas/fisiología , Organogénesis/fisiología , Células Fotorreceptoras de Vertebrados/citología , Células Fotorreceptoras de Vertebrados/fisiología , Retina/citología , Células Horizontales de la Retina/fisiología , Células Madre/fisiología , Sinapsis/fisiología , Sinapsis/ultraestructura , Factores de Tiempo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Pez Cebra
18.
J Neurosci ; 30(1): 382-9, 2010 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-20053919

RESUMEN

In many retinal diseases, the malfunction that results in photoreceptor loss occurs only in either rods or cones, but degeneration can progress from the affected cell type to its healthy neighbors. Specifically, in human and mouse models of Retinitis Pigmentosa the loss of rods results in the death of neighboring healthy cones. Significantly less is known about cone-initiated degenerations and their affect on neighboring cells. Sometimes rods remain normal after cone death, whereas other patients experience a loss of scotopic vision over time. The affect of cone death on neighboring cones is unknown. The zebrafish is a cone-rich animal model in which the potential for dying cones to kill neighboring healthy cones can be evaluated. We previously reported that the zebrafish cone phosphodiesterase mutant (pde6c(w59)) displays a rapid death of cones soon after their formation and a subsequent loss of rods in the central retina. In this study we examine morphological changes associated with cone death in vivo in pde6c(w59) fish. We then use blastulae transplantations to create chimeric fish with a photoreceptor layer of mixed wild-type (WT) and pde6c(w59) cones. We find that the death of inoperative cones does not cause neighboring WT cone loss. The survival of WT cones is independent of transplant size and location within the retina. Furthermore, transplanted WT cones persist at least several weeks after the initial death of dysfunctional mutant cones. Our results suggest a potential for the therapeutic transplantation of healthy cones into an environment of damaged cones.


Asunto(s)
Mutación/fisiología , Células Fotorreceptoras Retinianas Conos/citología , Células Fotorreceptoras Retinianas Conos/fisiología , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Animales , Efecto Espectador/fisiología , Muerte Celular , Degeneración Retiniana/fisiopatología , Pez Cebra , Proteínas de Pez Cebra/fisiología
19.
J Neurosci ; 30(36): 11951-61, 2010 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-20826659

RESUMEN

Astroglia secrete factors that promote synapse formation and maintenance. In culture, glial contact has also been shown to facilitate synaptogenesis. Here, we examined whether glial contact is important for establishing circuits in vivo by simultaneously monitoring differentiation of glial cells and local synaptogenesis over time. Photoreceptor circuits of the vertebrate retina are particularly suitable for this study because of the relatively simple, laminar organization of their connectivity with their target neurons, horizontal cells and bipolar cells. Also, individual photoreceptor terminals are ensheathed within the outer plexiform layer (OPL) by the processes of one type of glia, Müller glia cells (MGs). We conducted in vivo time-lapse multiphoton imaging of the rapidly developing and relatively transparent zebrafish retina to ascertain the time course of MG development relative to OPL synaptogenesis. The emergence of synaptic triads, indicative of functional photoreceptor circuits, and structural association with glial processes were also examined across ages by electron microscopy. We first show that MG processes form territories that tile within the inner and outer synaptic layers. We then demonstrate that cone photoreceptor synapses are assembled before the elaboration of MG processes in the OPL. Using a targeted cell ablation approach, we also determined whether the maintenance of photoreceptor synapses is perturbed when local MGs are absent. We found that removal of MGs had no appreciable effect on the stability of newly formed cone synapses. Thus, in contrast to other CNS circuits, contact from glia is not necessary for the formation or immediate stabilization of outer retinal synapses.


Asunto(s)
Neuroglía/fisiología , Neuronas/fisiología , Retina/citología , Sinapsis/fisiología , Aminoácidos , Animales , Animales Modificados Genéticamente , Embrión no Mamífero , Imagenología Tridimensional/métodos , Proteínas Luminiscentes/genética , Microscopía Confocal/métodos , Microscopía Electrónica de Transmisión/métodos , Neuroglía/ultraestructura , Neuronas/clasificación , Neuronas/ultraestructura , Fotoblanqueo , Receptores de Glutamato/metabolismo , Sinapsis/ultraestructura , Factores de Tiempo , Pez Cebra , Proteínas de Pez Cebra/genética
20.
Neuron ; 50(2): 247-59, 2006 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-16630836

RESUMEN

Axon terminals from the two eyes initially overlap in the dorsal-lateral geniculate nucleus (dLGN) but subsequently refine to occupy nonoverlapping territories. Retinal activity is required to establish and maintain this segregation. We show that despite the presence of retinal activity, segregated projections desegregate when the structure of activity is altered. Early in development, spontaneous retinal activity in the no b-wave (nob) mouse is indistinguishable from that of wild-type mice, and eye-specific segregation proceeds normally. But, around eye-opening, spontaneous and visually evoked activity in nob retinas become abnormal, coincident with a failure to preserve precise eye-specific territories. Dark-rearing studies suggest that altered visual experience is not responsible. Transgenic rescue of the mutated protein (nyctalopin) within nob retinal interneurons, without rescuing expression in either retinal projection neurons or their postsynaptic targets in the dLGN, restores spontaneous retinal activity patterns and prevents desegregation. Thus, normally structured spontaneous retinal activity stabilizes newly refined retinogeniculate circuitry.


Asunto(s)
Tipificación del Cuerpo/fisiología , Mapeo Encefálico , Cuerpos Geniculados/crecimiento & desarrollo , Retina/crecimiento & desarrollo , Vías Visuales/crecimiento & desarrollo , Animales , Procesamiento de Imagen Asistido por Computador , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Mutación , Proteoglicanos/genética , Células Ganglionares de la Retina/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA