Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Cell Biol ; 18(1): 16, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28335714

RESUMEN

BACKGROUND: In Drosophila early post-meiotic spermatids, mitochondria undergo dramatic shaping into the Nebenkern, a spherical body with complex internal structure that contains two interwrapped giant mitochondrial derivatives. The purpose of this study was to elucidate genetic and molecular mechanisms underlying the shaping of this structure. RESULTS: The knotted onions (knon) gene encodes an unconventionally large testis-specific paralog of ATP synthase subunit d and is required for internal structure of the Nebenkern as well as its subsequent disassembly and elongation. Knon localizes to spermatid mitochondria and, when exogenously expressed in flight muscle, alters the ratio of ATP synthase complex dimers to monomers. By RNAi knockdown we uncovered mitochondrial shaping roles for other testis-expressed ATP synthase subunits. CONCLUSIONS: We demonstrate the first known instance of a tissue-specific ATP synthase subunit affecting tissue-specific mitochondrial morphogenesis. Since ATP synthase dimerization is known to affect the degree of inner mitochondrial membrane curvature in other systems, the effect of Knon and other testis-specific paralogs of ATP synthase subunits may be to mediate differential membrane curvature within the Nebenkern.


Asunto(s)
Proteínas de Drosophila/metabolismo , Mitocondrias/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Morfogénesis , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón/metabolismo , Testículo/embriología , Animales , Drosophila melanogaster/enzimología , Evolución Molecular , Vuelo Animal/fisiología , Técnicas de Silenciamiento del Gen , Genes de Insecto , Proteínas Fluorescentes Verdes/metabolismo , Masculino , ATPasas de Translocación de Protón Mitocondriales/química , ATPasas de Translocación de Protón Mitocondriales/genética , Modelos Biológicos , Músculo Esquelético/metabolismo , Mutación/genética , Especificidad de Órganos , Fenotipo , Filogenia , Multimerización de Proteína , Subunidades de Proteína/genética , Interferencia de ARN , Espermátides/metabolismo , Espermatogénesis
2.
Elife ; 82019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31414984

RESUMEN

Innovations in metazoan development arise from evolutionary modification of gene regulatory networks (GRNs). We report widespread cryptic variation in the requirement for two key regulatory inputs, SKN-1/Nrf2 and MOM-2/Wnt, into the C. elegans endoderm GRN. While some natural isolates show a nearly absolute requirement for these two regulators, in others, most embryos differentiate endoderm in their absence. GWAS and analysis of recombinant inbred lines reveal multiple genetic regions underlying this broad phenotypic variation. We observe a reciprocal trend, in which genomic variants, or knockdown of endoderm regulatory genes, that result in a high SKN-1 requirement often show low MOM-2/Wnt requirement and vice-versa, suggesting that cryptic variation in the endoderm GRN may be tuned by opposing requirements for these two key regulatory inputs. These findings reveal that while the downstream components in the endoderm GRN are common across metazoan phylogeny, initiating regulatory inputs are remarkably plastic even within a single species.


Asunto(s)
Proteínas de Caenorhabditis elegans/biosíntesis , Caenorhabditis elegans/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Progranulinas/biosíntesis , Animales , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/metabolismo , Variación Genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Factores de Transcripción/metabolismo , Proteínas Wnt/metabolismo
3.
Genetics ; 167(2): 707-23, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15238523

RESUMEN

Male gametes are produced throughout reproductive life by a classic stem cell mechanism. However, little is known about the molecular mechanisms for lineage production that maintain male germ-line stem cell (GSC) populations, regulate mitotic amplification divisions, and ensure germ cell differentiation. Here we utilize the Drosophila system to identify genes that cause defects in the male GSC lineage when forcibly expressed. We conducted a gain-of-function screen using a collection of 2050 EP lines and found 55 EP lines that caused defects at early stages of spermatogenesis upon forced expression either in germ cells or in surrounding somatic support cells. Most strikingly, our analysis of forced expression indicated that repression of bag-of-marbles (bam) expression in male GSC is important for male GSC survival, while activity of the TGF beta signal transduction pathway may play a permissive role in maintenance of GSCs in Drosophila testes. In addition, forced activation of the TGF beta signal transduction pathway in germ cells inhibits the transition from the spermatogonial mitotic amplification program to spermatocyte differentiation.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila/genética , Factor de Crecimiento Transformador beta/fisiología , Animales , Diferenciación Celular , Regulación de la Expresión Génica , Mutación de Línea Germinal , Masculino , Transducción de Señal , Espermatocitos/citología , Espermatogonias/citología , Testículo/fisiología
4.
Development ; 129(19): 4523-34, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12223409

RESUMEN

Germ cells normally differentiate in the context of encapsulating somatic cells. However, the mechanisms that set up the special relationship between germ cells and somatic support cells and the signals that mediate the crucial communications between the two cell types are poorly understood. We show that interactions between germ cells and somatic support cells in Drosophila depend on wild-type function of the stet gene. In males, stet acts in germ cells to allow their encapsulation by somatic cyst cells and is required for germ cell differentiation. In females, stet function allows inner sheath cells to enclose early germ cells correctly at the tip of the germarium. stet encodes a homolog of rhomboid, a component of the epidermal growth factor receptor signaling pathway involved in ligand activation in the signaling cell. The stet mutant phenotype suggests that stet facilitates signaling from germ cells to the epidermal growth factor receptor on somatic cells, resulting in the encapsulation of germ cells by somatic support cells. The micro-environment provided by the surrounding somatic cells may, in turn, regulate differentiation of the germ cells they enclose.


Asunto(s)
Proteínas de Drosophila/metabolismo , Óvulo/fisiología , Proteínas Quinasas , Transducción de Señal , Espermatozoides/fisiología , Animales , Biomarcadores , Diferenciación Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Receptores ErbB/metabolismo , Proteínas del Ojo/genética , Femenino , Masculino , Proteínas de la Membrana/genética , Óvulo/citología , Óvulo/metabolismo , Proteínas Proto-Oncogénicas/genética , Receptores de Superficie Celular , Receptores de Péptidos de Invertebrados/metabolismo , Espermatozoides/citología , Espermatozoides/metabolismo , Proteína Wnt1
5.
Development ; 129(22): 5171-80, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12399309

RESUMEN

Development of the vulva in C. elegans is mediated by the combinatorial action of several convergent regulatory inputs, three of which, the Ras, Wnt and Rb-related pathways, act by regulating expression of the lin-39 Hox gene. LIN-39 specifies cell fates and regulates cell fusion in the mid-body region, leading to formation of the vulva. In the lateral seam epidermis, differentiation and cell fusion have been shown to be regulated by two GATA-type transcription factors, ELT-5 and -6. We report that ELT-5 is encoded by the egl-18 gene, which was previously shown to promote formation of a functional vulva. Furthermore, we find that EGL-18 (ELT-5), and its paralogue ELT-6, are redundantly required to regulate cell fates and fusion in the vulval primordium and are essential to form a vulva. Elimination of egl-18 and elt-6 activity results in arrest by the first larval stage; however, in animals rescued for this larval lethality by expression of ELT-6 in non-vulval cells, the post-embryonic cells (P3.p-P8.p) that normally become vulval precursor cells often fuse with the surrounding epidermal syncytium or undergo fewer than normal cell divisions, reminiscent of lin-39 mutants. Moreover, egl-18/elt-6 reporter gene expression in the developing vulva is attenuated in lin-39(rf) mutants, and overexpression of egl-18 can partially rescue the vulval defects caused by reduced lin-39 activity. LIN-39/CEH-20 heterodimers bind two consensus HOX/PBC sites in a vulval enhancer region of egl-18/elt-6, one of which is essential for vulval expression of egl-18/elt-6 reporter constructs. These findings demonstrate that the EGL-18 and ELT-6 GATA factors are essential, genetically redundant regulators of cell fates and fusion in the developing vulva and are apparent direct transcriptional targets of the LIN-39 Hox protein.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Vulva/crecimiento & desarrollo , Animales , Sitios de Unión , Proteínas de Caenorhabditis elegans/genética , Diferenciación Celular/fisiología , Fusión Celular , Proteínas de Unión al ADN/genética , Dimerización , Elementos de Facilitación Genéticos , Femenino , Factores de Transcripción GATA , Proteínas Fluorescentes Verdes , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Proteínas de Homeodominio/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Mutación , Neuronas/citología , Neuronas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Factores de Transcripción/genética , Vulva/anomalías , Vulva/metabolismo
6.
Development ; 129(10): 2529-39, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-11973283

RESUMEN

Germ cells require intimate associations and signals from the surrounding somatic cells throughout gametogenesis. The zero population growth (zpg) locus of Drosophila encodes a germline-specific gap junction protein, Innexin 4, that is required for survival of differentiating early germ cells during gametogenesis in both sexes. Animals with a null mutation in zpg are viable but sterile and have tiny gonads. Adult zpg-null gonads contain small numbers of early germ cells, resembling stem cells or early spermatogonia or oogonia, but lack later stages of germ cell differentiation. In the male, Zpg protein localizes to the surface of spermatogonia, primarily on the sides adjacent to the somatic cyst cells. In the female, Zpg protein localizes to germ cell surfaces, both those adjacent to surrounding somatic cells and those adjacent to other germ cells. We propose that Zpg-containing gap junctional hemichannels in the germ cell plasma membrane may connect with hemichannels made of other innexin isoforms on adjacent somatic cells. Gap junctional intercellular communication via these channels may mediate passage of crucial small molecules or signals between germline and somatic support cells required for survival and differentiation of early germ cells in both sexes.


Asunto(s)
Conexinas/genética , Proteínas de Drosophila/genética , Drosophila/genética , Oocitos/fisiología , Espermatozoides/fisiología , Secuencia de Aminoácidos , Animales , Diferenciación Celular/genética , Membrana Celular/metabolismo , Supervivencia Celular/genética , Conexinas/metabolismo , Proteínas de Drosophila/metabolismo , Femenino , Uniones Comunicantes/genética , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA