RESUMEN
PURPOSE: The relentless rise in antimicrobial resistance is a major societal challenge and requires, as part of its solution, a better understanding of bacterial colonization and infection. To facilitate this, we developed a highly efficient no-wash red optical molecular imaging agent that enables the rapid, selective, and specific visualization of Gram-positive bacteria through a bespoke optical fiber-based delivery/imaging endoscopic device. METHODS: We rationally designed a no-wash, red, Gram-positive-specific molecular imaging agent (Merocy-Van) based on vancomycin and an environmental merocyanine dye. We demonstrated the specificity and utility of the imaging agent in escalating in vitro and ex vivo whole human lung models (n = 3), utilizing a bespoke fiber-based delivery and imaging device, coupled to a wide-field, two-color endomicroscopy system. RESULTS: The imaging agent (Merocy-Van) was specific to Gram-positive bacteria and enabled no-wash imaging of S. aureus within the alveolar space of whole ex vivo human lungs within 60 s of delivery into the field-of-view, using the novel imaging/delivery endomicroscopy device. CONCLUSION: This platform enables the rapid and specific detection of Gram-positive bacteria in the human lung.
Asunto(s)
Fibras Ópticas , Staphylococcus aureus , Endoscopios , Bacterias Grampositivas , Humanos , Pulmón/diagnóstico por imagenRESUMEN
A robust method to selectively attach specific fluorophores onto the individual cores of a multicore fiber is reported in this Letter. The method is based on the use of ultrafast laser pulses to nanostructure the facet of the fiber core, followed by amine functionalization and sensor conjugation. This surface-machining protocol not only enables precise spatial selectivity, but it also facilitates high deposition densities of the sensor moieties. As a proof of concept, the successful deposition of three different fluorophores onto selected cores of a multicore fiber is demonstrated. The protocol was developed to include attachment of a fluorescence-based pH sensor using the ratiometric carboxynapthofluorescein.
RESUMEN
Numerous optodes, with fluorophores as the chemical sensing element and optical fibres for light delivery and collection, have been fabricated for minimally invasive endoscopic measurements of key physiological parameters such as pH. These flexible miniaturised optodes have typically attempted to maximize signal-to-noise through the application of high concentrations of fluorophores. We show that high-density attachment of carboxyfluorescein onto silica microspheres, the sensing elements, results in fluorescence energy transfer, manifesting as reduced fluorescence intensity and lifetime in addition to spectral changes. We demonstrate that the change in fluorescence intensity of carboxyfluorescein with pH in this "high-density" regime is opposite to that normally observed, with complex variations in fluorescent lifetime across the emission spectra of coupled fluorophores. Improved understanding of such highly loaded sensor beads is important because it leads to large increases in photostability and will aid the development of compact fibre probes, suitable for clinical applications. The time-resolved spectral measurement techniques presented here can be further applied to similar studies of other optodes.
RESUMEN
We describe a technique for the quantitative characterization of endoscopic imaging fibers using an interference pattern as the standard object to be imaged. The visibility of the pattern at the other end of the fiber is then analyzed as wavelength and fringe period are varied. We demonstrate the use of the technique by comparing three fibers: two fabricated in-house from the same preform, designed to minimize inter-core coupling at visible wavelengths less than 650 nm, and a commercial imaging fiber. The techniques discussed are currently being used to optimize fibers for fluorescence bronchoscopy to be used in intensive care clinics.
Asunto(s)
Endoscopía/métodos , Tecnología de Fibra Óptica/instrumentación , Fibras Ópticas , Diseño de Equipo , HumanosRESUMEN
The fabrication of fluorescence-based pH sensors, embedded into etched pits of an optical fibre via highly controllable and spatially selective photo-polymerisation is described and the sensors validated.
RESUMEN
Fiber-based Raman spectroscopy in the context of in vivo biomedical application suffers from the presence of background fluorescence from the surrounding tissue that might mask the crucial but inherently weak Raman signatures. One method that has shown potential for suppressing the background to reveal the Raman spectra is shifted excitation Raman spectroscopy (SER). SER collects multiple emission spectra by shifting the excitation by small amounts and uses these spectra to computationally suppress the fluorescence background based on the principle that Raman spectrum shifts with excitation while fluorescence spectrum does not. We introduce a method that utilizes the spectral characteristics of the Raman and fluorescence spectra to estimate them more effectively, and compare this approach against existing methods on real world datasets.
Asunto(s)
Espectrometría Raman , Espectrometría Raman/métodosRESUMEN
Using the shifted-excitation Raman difference spectroscopy technique and an optical fibre featuring a negative curvature excitation core and a coaxial ring of high numerical aperture collection cores, we have developed a portable, background and fluorescence free, endoscopic Raman probe. The probe consists of a single fibre with a diameter of less than 0.25 mm packaged in a sub-millimetre tubing, making it compatible with standard bronchoscopes. The Raman excitation light in the fibre is guided in air and therefore interacts little with silica, enabling an almost background free transmission of the excitation light. In addition, we used the shifted-excitation Raman difference spectroscopy technique and a tunable 785 nm laser to separate the fluorescence and the Raman spectrum from highly fluorescent samples, demonstrating the suitability of the probe for biomedical applications. Using this probe we also acquired fluorescence free human lung tissue data.