Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(11): e2208120120, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36877837

RESUMEN

Increasing fire severity and warmer, drier postfire conditions are making forests in the western United States (West) vulnerable to ecological transformation. Yet, the relative importance of and interactions between these drivers of forest change remain unresolved, particularly over upcoming decades. Here, we assess how the interactive impacts of changing climate and wildfire activity influenced conifer regeneration after 334 wildfires, using a dataset of postfire conifer regeneration from 10,230 field plots. Our findings highlight declining regeneration capacity across the West over the past four decades for the eight dominant conifer species studied. Postfire regeneration is sensitive to high-severity fire, which limits seed availability, and postfire climate, which influences seedling establishment. In the near-term, projected differences in recruitment probability between low- and high-severity fire scenarios were larger than projected climate change impacts for most species, suggesting that reductions in fire severity, and resultant impacts on seed availability, could partially offset expected climate-driven declines in postfire regeneration. Across 40 to 42% of the study area, we project postfire conifer regeneration to be likely following low-severity but not high-severity fire under future climate scenarios (2031 to 2050). However, increasingly warm, dry climate conditions are projected to eventually outweigh the influence of fire severity and seed availability. The percent of the study area considered unlikely to experience conifer regeneration, regardless of fire severity, increased from 5% in 1981 to 2000 to 26 to 31% by mid-century, highlighting a limited time window over which management actions that reduce fire severity may effectively support postfire conifer regeneration.


Asunto(s)
Incendios , Tracheophyta , Incendios Forestales , Clima , Cambio Climático
2.
Ecol Appl ; 31(2): e2238, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33067874

RESUMEN

Increasing aridity is a challenge for forest managers and reducing stand density to minimize competition is a recognized strategy to mitigate drought impacts on growth. In many dry forests, the most widespread and common forest management programs currently being implemented focus on restoration of historical stand structures, primarily to minimize fire risk and enhance watershed function. The implications of these restoration projects for drought vulnerability are not well understood. Here, we examined how planned restoration treatments in the Four Forests Restoration Initiative, the largest forest restoration project in the United States, would alter landscape-scale patterns of forest growth and drought vulnerability throughout the 21st century. Using drought-growth relationships developed within the landscape, we considered a suite of climate and treatment scenarios and estimated average forest growth and the proportion of years with extremely low growth as a measure of vulnerability to long-term decline. Climatic shifts projected for this landscape include higher temperatures and shifting seasonal precipitation that promotes lower soil moisture availability in the early growing season and greater hot-dry stress, conditions negatively associated with tree growth. However, drought severity and the magnitude of future growth declines were moderated by the thinning treatments. Compared to historical conditions, proportional growth in mid-century declines by ~40% if thinning ceases or continues at the status quo pace. By comparison, proportional growth declines by only 20% if the Four Forest Restoration Initiative treatments are fully implemented, and <10% if stands are thinned even more intensively than currently planned. Furthermore, restoration treatments resulted in dramatically fewer years with extremely low growth in the future, a recognized precursor to forest decline and eventual tree mortality. Benefits from density reduction for mitigating drought-induced growth declines are more apparent in mid-century and under RCP4.5 than under RCP8.5 at the end of the century. Future climate is inherently uncertain, and our results only reflect the climate projections from the representative suite of models examined. Nevertheless, these results indicate that forest restoration projects designed for other objectives also have substantial benefits for minimizing future drought vulnerability in dry forests and provide additional incentive to accelerate the pace of restoration.


Asunto(s)
Sequías , Árboles , Cambio Climático , Bosques , Estaciones del Año
3.
Ecol Appl ; 29(8): e01979, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31332869

RESUMEN

Higher tree density, more fuels, and a warmer, drier climate have caused an increase in the frequency, size, and severity of wildfires in western U.S. forests. There is an urgent need to restore forests across the western United States. To address this need, the U.S. Forest Service began the Four Forest Restoration Initiative (4FRI) to restore four national forests in Arizona. The objective of this study was to evaluate how restoration of ~400,000 ha under the 4FRI program and projected climate change would influence carbon dynamics and wildfire severity from 2010 to 2099. Specifically, we estimated forest carbon fluxes, carbon pools and wildfire severity under a moderate and fast 4FRI implementation schedule and compared those to status quo and no-harvest scenarios using the LANDIS-II simulation model and climate change projections. We found that the fast-4FRI scenario showed early decreases in ecosystem carbon due to initial thinning/prescribed fire treatments, but total ecosystem carbon increased by 9-18% over no harvest by the end of the simulation. This increased carbon storage by 6.3-12.7 million metric tons, depending on the climate model, equating to removal of carbon emissions from 55,000 to 110,000 passenger vehicles per year until the end of the century. Nearly half of the additional carbon was stored in more stable soil pools. However, climate models with the largest predicted temperature increases showed declines by late century in ecosystem carbon despite restoration. Our study uses data from a real-world, large-scale restoration project and indicates that restoration is likely to stabilize carbon and the benefits are greater when the pace of restoration is faster.


Asunto(s)
Cambio Climático , Incendios , Arizona , Carbono , Ecosistema , Sudoeste de Estados Unidos , Árboles
4.
PLoS One ; 9(9): e107532, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25221963

RESUMEN

Lodgepole pine (Pinus contorta) forests are widely distributed throughout North America and are subject to mountain pine beetle (Dendroctonus ponderosae) epidemics, which have caused mortality over millions of hectares of mature trees in recent decades. Mountain pine beetle is known to influence stand structure, and has the ability to impact many forest processes. Dwarf mistletoe (Arceuthobium americanum) also influences stand structure and occurs frequently in post-mountain pine beetle epidemic lodgepole pine forests. Few studies have incorporated both disturbances simultaneously although they co-occur frequently on the landscape. The aim of this study is to investigate the stand structure of lodgepole pine forests 21-28 years after a mountain pine beetle epidemic with varying levels of dwarf mistletoe infection in the Deschutes National Forest in central Oregon. We compared stand density, stand basal area, canopy volume, proportion of the stand in dominant/codominant, intermediate, and suppressed cohorts, average height and average diameter of each cohort, across the range of dwarf mistletoe ratings to address differences in stand structure. We found strong evidence of a decrease in canopy volume, suppressed cohort height, and dominant/codominant cohort diameter with increasing stand-level dwarf mistletoe rating. There was strong evidence that as dwarf mistletoe rating increases, proportion of the stand in the dominant/codominant cohort decreases while proportion of the stand in the suppressed cohort increases. Structural differences associated with variable dwarf mistletoe severity create heterogeneity in this forest type and may have a significant influence on stand productivity and the resistance and resilience of these stands to future biotic and abiotic disturbances. Our findings show that it is imperative to incorporate dwarf mistletoe when studying stand productivity and ecosystem recovery processes in lodgepole pine forests because of its potential to influence stand structure.


Asunto(s)
Escarabajos/patogenicidad , Ecosistema , Muérdago , Pinus/crecimiento & desarrollo , Animales , Conservación de los Recursos Naturales , Bosques , Oregon , Pinus/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA