Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Photochem Photobiol Sci ; 11(10): 1585-91, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22898878

RESUMEN

In this study we have compared energy and electron transfer reactions in termolecular systems using a nanosecond diffuse reflectance laser flash photolysis technique. We have previously investigated these processes on silica gel surfaces for bimolecular systems and electron transfer in termolecular systems. The latter systems involved electron transfer between three arene molecules with azulene acting as a molecular shuttle. In this study we present an alternative electron transfer system using trans ß-carotene as an electron donor in order to effectively immobilise all species except the shuttle, providing the first unambiguous evidence for radical ion mobility. In the energy transfer system we use naphthalene, a structural isomer of azulene, as the shuttle, facilitating energy transfer from a selectively excited benzophenone sensitiser to 9-cyanoanthracene. Bimolecular rate constants for all of these processes have been measured and new insights into the factors determining the rates of these reactions on silica gel have been obtained.

2.
Photochem Photobiol Sci ; 10(1): 84-90, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20978659

RESUMEN

Activation energies for energy and electron transfer have been measured in various systems on silica gel. In the case of ion-electron recombination, a facile technique involving fluorescence recovery is described which complements diffuse reflectance spectroscopy in the study of these systems. In bimolecular anthracene/azulene systems, activation energies have been shown to be independent of pre-treatment temperature in the range 25-210 °C, demonstrating that physisorbed water plays little role in determining diffusion rates on silica gel. In a ternary anthracene/azulene/perylene system, we have for the first time presented comparative activation energies for the diffusion of azulene and its radical cation, and have shown a greater activation energy for diffusion of the latter species.

3.
Photochem Photobiol Sci ; 9(7): 937-41, 2010 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-20464021

RESUMEN

Electron transfer reactions have been studied between 9-anthracenecarboxylic acid co-adsorbed with perylene on silica gel surfaces employing azulene as a molecular shuttle in order to facilitate hole transfer. In this paper we present for the first time a ternary system that unambiguously demonstrates an appreciable mobility of radical cations on the silica gel surface. Rates of hole transfer from the 9-anthracenecarboxylic acid radical cation to perylene via azulene have been studied using diffuse reflectance laser flash photolysis spectroscopy. Azulene has been shown to enhance the rate of electron transfer in the ternary system, proving significant mobility of the azulene and its radical cation species on silica gel surfaces. The data shows that the azulene radical cation can diffuse at an appreciable rate on the silica gel surface.

4.
Angew Chem Int Ed Engl ; 37(19): 2683-2685, 1998 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-29711624

RESUMEN

The hydrogen-terminated surface of porous silicon (PS) is sufficiently reactive for the uncatalyzed hydrosilation of alkenes and alkynes. These modifications produce dramatic changes to both the physical and chemical properties of the PS.

5.
J Photochem Photobiol B ; 130: 93-101, 2014 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-24300996

RESUMEN

Perinaphthenone (1H-phenalen-1-one, PN) is a reference photosensitizer producing singlet oxygen with a quantum yield close to one in a large variety of solvents. It is also the basic structure of a class of phototoxic phytoalexins. In this work, the PN photoreactivity was studied for the first time in a paraffinic wax, used as model of leaf epicuticular waxes. The PN photodegradation was monitored by UV-Vis spectroscopy. The triplet excited state, singlet oxygen and the hydroxyperinaphthenyl radical were detected by diffuse reflectance laser flash photolysis, near infrared phosphorescence and by EPR spectroscopy, respectively. The PN phototransformation was found to be fivefold faster in the wax than in n-heptane under steady-state irradiation. The hydroxyperinaphthenyl radical formation was observed in aerated irradiated paraffin wax while in n-heptane solution the radical was observed only in the absence of oxygen. These results show that under continuous irradiation, PN is much more easily phototransformed in a solid environment than in solution. Several photoproducts were identified, in particular phenalanone, PN dimers, and oxidized PN-alkanes adducts. Finally, when pyrethrum extract is added into the wax along with PN, the hydroxyperinaphthenyl radical concentration was increased by a factor of 2.4. Such photochemical reactions may occur when systemic pesticides enter the plant cuticle.


Asunto(s)
Fenalenos/química , Fenalenos/efectos de la radiación , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/efectos de la radiación , Oxígeno Singlete/química , Chrysanthemum cinerariifolium , Heptanos/química , Rayos Láser , Parafina/química , Plaguicidas/química , Fotólisis , Extractos Vegetales/química , Hojas de la Planta/química , Ceras/química
6.
Photochem Photobiol Sci ; 5(9): 844-9, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17047837

RESUMEN

Kinetics on silica gel and other solid, porous surfaces are often complex. In this paper we have studied the decay kinetics of radical cations produced following multiphoton ionisation on silica gel, and have characterised these using an empirical model. Trends in kinetics have been observed both as a function of concentration and of temperature. Concentration dependent studies suggest heterogeneity of surface adsorption, both in terms of the nature of adsorption sites and aggregation effects. Temperature dependent studies show that the activation energies for surface diffusion correlate with the size of the radical cation, suggesting that its movement rather than that of the electron dominates the observed kinetics. Monte Carlo simulations have been shown to give useful qualitative insights into the interpretation of the extracted parameters, in particular into how apparent distributions of rate constants can arise as a result of low surface dimensionality.

7.
J Phys Chem A ; 110(14): 4638-48, 2006 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-16599430

RESUMEN

Quantum chemical density functional theory (DFT) calculations and spectral data were employed to investigate the possibility of the excited-state double proton transfer (ESDPT) in lumichrome crystals. The calculations in a lumichrome dimer predict a transfer of a proton in the first excited state, leading to a cation-anion pair. The presently reported X-ray structure of 1,3-dimethyllumichrome and its complex solid-state luminescence indicate that also in this molecule intermolecular hydrogen bonds might be involved in the photophysics. The long-wavelength emission in lumichrome crystals peaked at 530 nm is attributed to excited-state proton transfer, whereas a wider emission band in methylated lumichrome derivatives peaked at 560 nm is attributed to ions formed upon photoexcitation of the crystals.


Asunto(s)
Flavinas/química , Modelos Químicos , Protones , Teoría Cuántica , Algoritmos , Cristalografía por Rayos X , Dimerización , Rayos Láser , Estructura Molecular , Fotoquímica , Análisis Espectral
8.
J Org Chem ; 70(1): 63-78, 2005 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-15624907

RESUMEN

The synthesis of a series of poly(aromatic amide) dendrimers up to the second generation is described herein. The AB(2) building block used throughout the synthesis of the dendrimers was the allyl ester of 3,5-diaminocinnamic acid, which has been synthesized from 3,5-dinitrobenzoic acid in good yield with use of a four-step procedure. Dendron synthesis was achieved via a convergent approach with use of a sequence of deprotection/coupling steps. Two commercially available alcohols, L-menthol and citronellol, were coupled to the AB(2) monomer by using an alkyl diacid spacer and two core units; 1,7-diaminoheptane and tris(2-aminoethyl)amine have been used to produce the final dendrimers. Characterization was carried out by NMR and IR spectroscopies, MALDI-TOF mass spectrometry, GPC, and DSC. The novel monomer and dendritic derivatives exhibited a strong fluorescence emission in the visible region (lambda approximately 500 nm) of the spectrum and a weak emission in the near-infrared (lambda approximately 850 nm) upon excitation in the near-UV region. The fluorescence emission characteristics were found to be solvent and dendrimer generation dependent.

9.
Photochem Photobiol Sci ; 3(1): 63-70, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14743281

RESUMEN

Triplet state and radical cation formation is observed following laser excitation of anthracene, phenanthrene and naphthalene (and their derivatives) adsorbed on silica gel. Energy- and electron-transfer reactions of these compounds with co-adsorbed azulene have been studied using a time-resolved diffuse reflectance laser flash photolysis technique. Triplet energy transfer from the arene derivative to azulene and electron transfer from azulene to the arene radical cation have been investigated in order to distinguish between diffusional and energetic control in these systems. Energy and electron transfer can be studied independently due to differing absorption properties and energy dependencies of production of the triplet states and radical cations. Transient decay kinetics for both electron and energy transfer have been modelled using two different rate constant distributions: a log Gaussian and a symmetrical Levy stable distribution. The latter model has also been demonstrated to be applicable to the decay of radical cations in the absence of an electron donor, which cannot be adequately described by the Gaussian model. Energy-transfer rates between the arene derivatives and azulene have been found to be close to the diffusion-controlled limit; however, in most cases, the rate of electron transfer is considerably lower. A correlation between the bimolecular rate constant and free energy of electron transfer has been found, indicating a Marcus inverted region. Compounds with bulky substituents show a further reduction in the rate of electron transfer, suggesting that an additional steric factor is involved in this process.

10.
Photochem Photobiol Sci ; 1(11): 896-901, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12659530

RESUMEN

Energy and electron transfer reactions between co-adsorbed molecules on silica gel have been studied using nanosecond time-resolved diffuse reflectance laser flash photolysis. The systems under investigation are anthracene and 9-carboxylic acid anthracene co-adsorbed with azulene, which undergo both triplet-triplet energy transfer and electron transfer from azulene to the anthracene radical cation following laser excitation. The decay traces have been analysed using a model which assumes a log gaussian distribution of rate constants and the methodology behind the optimisation of the fitting parameters is described. Bimolecular rate constants for energy and electron transfer between anthracene (and its derivative) and azulene have been obtained. Ground state association between anthracene and azulene has been observed, and an equilibrium constant for the process determined. The kinetic data is corrected for these ground state association effects which reduce the free azulene concentration. For both systems and for both the energy and electron transfer processes, analysis of the quenching data yields the same quenching constant. This indicates that the rate of reaction of anthracene (and the 9-carboxylic acid anthracene) on silica gel is predominantly governed by the rate of diffusion of the quencher.

11.
Photochem Photobiol Sci ; 2(3): 212-7, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12713219

RESUMEN

Data is presented on the quenching of 9,10-dicyanoanthracene by benzene derivatives in acetonitrile. The quenching occurs via a charge transfer mechanism with the quenching rate constants exhibiting a Rehm-Weller dependence on the free energy change of the electron transfer reaction. The quenching of the prompt fluorescence brings about an increase in the delayed fluorescence of DCA as a result of intersystem crossing in the exciplex, and a modified Wilkinson's plot has been used to determine the efficiency of triplet formation during the quenching of DCA fluorescence by benzene derivatives. We suggest that intersystem crossing yields in the exciplex are unity, and variations in triplet state yields as a result of singlet state quenching reflect partitioning between exciplex formation and solvent-separated radical ion pair (SSRIP) formation. The data clearly show competition between exciplex formation and SSRIP formation, with the latter becoming dominant when the free energy for electron transfer exceeds the solvent reorganisation energy.

12.
Dalton Trans ; (1): 30-6, 2004 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-15356738

RESUMEN

Photophysical properties for a number ruthenium(II) and osmium(II) bipyridyl complexes are reported in dilute acetonitrile solution. The lifetimes of the excited metal to ligand charge transfer states (MLCT) of the osmium complexes are shorter than for the ruthenium complexes. Rate constants, kq, for quenching of the lowest excited metal to ligand charge transfer states by molecular oxygen are found to be in the range (1.1-7.7) x 10(9) dm3 mol(-1) s(-1). Efficiencies of singlet oxygen production, fDeltaT, following oxygen quenching of the lowest excited states of these ruthenium and osmium complexes are in the range of 0.10-0.72, lower values being associated with those compounds having lower oxidation potentials. The rate constants for quenching of the excited MLCT states, kq, are found to be generally higher for osmium complexes than for ruthenium complexes. Overall quenching rate constants, kq were found to give an inverse correlation with the energy of the excited state being quenched, and also to correlate with the oxidation potentials of the complexes. However, when the contribution of quenching due exclusively to energy transfer to produce singlet oxygen, kq1, is considered, its dependence on the energy of the excited states is more complex. Rate constants for quenching due to energy dissipation of the excited MLCT states without energy transfer, kq3, were found to show a clear correlation with the oxidation potential of the complexes. Factors affecting both the mechanism of oxygen quenching of the excited states and the efficiency of singlet oxygen generation following this quenching are discussed. These factors include the oxidation potential, the energy of the lowest excited state of the complexes and spin-orbit coupling constant of the central metal.

13.
Photochem Photobiol Sci ; 2(5): 518-23, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12803074

RESUMEN

Rate constants are measured for the addition reactions of 1-hydroxy-1-cyclohexyl (1HC) and 2-hydroxy-2-propyl (2HP) radicals to 7 alkenes and for the 1-electron reduction of 16 organic dyes by 1HC, and a subset of 5 of these dyes by 2HP. This was done to determine to what extent the many reported rate constants for reactions of 2-hydroxy-2-propyl radicals (2HP) may be used to predict the rates of reactions of other tertiary alpha-hydroxy-alkyl radicals, and to give a better understanding of the factors that control dye reduction. The dyes were chosen to represent a wide range of dye types (azo, anthraquinone, phthalocyanine, triaryl-methane, indocyanine and azine dyes). Radicals were produced by laser flash photolysis of the corresponding tertiary alpha-hydroxyketone giving carbonyl and tertiary alpha-hydroxy-alkyl radicals. Control experiments with a bis-acylphosphine oxide were carried out which clearly demonstrated that the carbonyl radicals did not interfere with the kinetics. On average the addition and reduction rate constants for 1HC are only 20% lower than for 2HP. Larger decreases are observed for sterically congested alkenes due to the increased steric bulk of 1HC. The rate constants for 1-electron reduction of the dyes are in the range 4 x 10(7) to 6 x 10(9) mol-1 1 s-1 and may be predicted, reasonably well using the Marcus equation with a reorganisation energy, lambda = 182 kJ mol-1.

14.
J Fluoresc ; 14(1): 57-64, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15622861

RESUMEN

We present a systematic study of the effect of methyl substitution on iso- and alloxazines in acetonitrile solutions. Substitution patterns have profound effects on both spectral and photophysical properties, with fluorescence quantum yields varying by more than an order of magnitude. TD-DFT calculation were used for the first time to correlate electronic structure changes with the substitution patterns, with good agreement between calculated and theoretical band positions and oscillator strengths. Both n-pi* and pi-pi* states in these compounds are predicted, with the oscillator strengths indicating that only the pi-pi* states should be observable in the absorption spectra. Substitution patterns are shown to be responsible for energy order inversion between these states.

15.
J Am Chem Soc ; 124(29): 8532-3, 2002 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-12121086

RESUMEN

The understanding of radical reactions in nanostructured materials is important for developing new synthetic procedures and controlling degradation reactions. To develop this area, an easy method for measuring quantitative rate constants of some radical reactions in nanostructures is required. A simple method for measuring the rate constant of dye bleaching, kdye, by organic radicals in such materials is introduced, involving the measurement of microsecond bleaching kinetics by diffuse reflectance spectroscopy, following laser flash creation of the radicals. Using wet and dry cotton as model substrates, we obtained kdye of 2-hydroxy-2-propyl and 1-hydroxy-1-cyclohexyl radicals with reactive red 3 and reactive orange 4 and compared them to solution-phase values. Surprisingly, the reactions in cotton follow simple liquid-phase kinetics and are diffusion-controlled. A cage effect in cotton is also found.


Asunto(s)
Gossypium/química , Compuestos Azo/química , Colorantes/química , Cinética , Fotólisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA