Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanotechnology ; 35(26)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38522105

RESUMEN

We introduce a new scanning probe microscopy (SPM) concept called reverse tip sample scanning probe microscopy (RTS SPM), where the tip and sample positions are reversed as compared to traditional SPM. The main benefit of RTS SPM over the standard SPM configuration is that it allows for simple and fast tip changes. This overcomes two major limitations of SPM which are slow data acquisition and a strong dependency of the data on the tip condition. A probe chip with thousands of sharp integrated tips is the basis of our concept. We have developed a nanofabrication protocol for Si based probe chips and their functionalization with metal and diamond coatings, evaluated our probe chips for various RTS SPM applications (multi-tip imaging, SPM tomography, and correlative SPM), and showed the high potential of the RTS SPM concept.

2.
ACS Appl Mater Interfaces ; 14(15): 17975-17986, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35380425

RESUMEN

Passivating contacts consisting of heavily doped polycrystalline silicon (poly-Si) and ultrathin interfacial silicon oxide (SiOx) films enable the fabrication of high-efficiency Si solar cells. The electrical properties and working mechanism of such poly-Si passivating contacts depend on the distribution of dopants at their interface with the underlying Si substrate of solar cells. Therefore, this distribution, particularly in the vicinity of pinholes in the SiOx film, is investigated in this work. Technology computer-aided design (TCAD) simulations were performed to study the diffusion of dopants, both phosphorus (P) and boron (B), from the poly-Si film into the Si substrate during the annealing process typically applied to poly-Si passivating contacts. The simulated 2D doping profiles indicate enhanced diffusion under pinholes, yielding deeper semicircular regions of increased doping compared to regions far removed from the pinholes. Such regions with locally enhanced doping were also experimentally demonstrated using high-resolution (5-10 nm/pixel) scanning spreading resistance microscopy (SSRM) for the first time. The SSRM measurements were performed on a variety of poly-Si passivating contacts, fabricated using different approaches by multiple research institutes, and the regions of doping enhancement were detected on samples where the presence of pinholes had been reported in the related literature. These findings can contribute to a better understanding, more accurate modeling, and optimization of poly-Si passivating contacts, which are increasingly being introduced in the mass production of Si solar cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA