RESUMEN
The idea that noncrop habitat enhances pest control and represents a win-win opportunity to conserve biodiversity and bolster yields has emerged as an agroecological paradigm. However, while noncrop habitat in landscapes surrounding farms sometimes benefits pest predators, natural enemy responses remain heterogeneous across studies and effects on pests are inconclusive. The observed heterogeneity in species responses to noncrop habitat may be biological in origin or could result from variation in how habitat and biocontrol are measured. Here, we use a pest-control database encompassing 132 studies and 6,759 sites worldwide to model natural enemy and pest abundances, predation rates, and crop damage as a function of landscape composition. Our results showed that although landscape composition explained significant variation within studies, pest and enemy abundances, predation rates, crop damage, and yields each exhibited different responses across studies, sometimes increasing and sometimes decreasing in landscapes with more noncrop habitat but overall showing no consistent trend. Thus, models that used landscape-composition variables to predict pest-control dynamics demonstrated little potential to explain variation across studies, though prediction did improve when comparing studies with similar crop and landscape features. Overall, our work shows that surrounding noncrop habitat does not consistently improve pest management, meaning habitat conservation may bolster production in some systems and depress yields in others. Future efforts to develop tools that inform farmers when habitat conservation truly represents a win-win would benefit from increased understanding of how landscape effects are modulated by local farm management and the biology of pests and their enemies.
Asunto(s)
Productos Agrícolas , Ecosistema , Modelos Biológicos , Control Biológico de Vectores , Animales , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/parasitologíaRESUMEN
An insect's fitness varies on different host plant species, and can be affected by previous host feeding experience. In New Zealand, Bactericera cockerelli (the tomato potato psyllid (TPP)) overwinter on various host species, and later migrate to annually grown crop host plants. How changing host plant species affects the insect's fitness is unknown. This study evaluated if transferring adult TPP from non-crop to crop host species impacts the development and survival of their progeny. TPP were reared on non-crop host species, boxthorn, poroporo, and crop host species, potato and tomato. Adults were transferred from non-crop to the crop host species and allowed to oviposit for 48 hours before being removed. The eggs and nymphs were monitored every 24 hours for the development and survival of each life stage. The incubation period of eggs from adults transferred from poroporo to tomato was 6.9 days, and for boxthorn to tomato was 7.2 days, and was less than for eggs of adults moved from tomato to tomato (9.0 days) and potato to potato (9.2 days) (P < 0.05). Nymph developmental time was similar for all treatments. Total development time (egg to adult) was shorter for the progeny of adults from poroporo transferred to tomato (20.5 days) than those from tomato to tomato (23.2). The survival of eggs did not differ across treatments. Fewer nymphs survived when adults were transferred from tomato to tomato (50.4%) than those from poroporo to tomato (92.1%) (P < 0.05). Total survival (egg to adult) was higher for progeny of adults transferred from poroporo to tomato (80.0%) compared to boxthorn to potato (35.3%), boxthorn to boxthorn (40.7%), poroporo to potato (33.9%) and tomato to tomato (37.6%) (P < 0.05). The implications of this shift in fitness are discussed in relation to TPP management.
Asunto(s)
Hemípteros , Solanum lycopersicum , Solanum tuberosum , Solanum , Animales , NinfaRESUMEN
Sodium (Na) concentrations are low in plant tissues, and its metabolic function in plants is minor; however, Na is a key nutrient for plant consumers. Previous studies have thus far focused on Na concentration. Nevertheless, a balanced potassium (K) to Na ratio (K:Na) is more important than Na concentration alone since food with high K:Na has detrimental effects on consumers irrespective of Na concentration. Therefore, plants may actively regulate K:Na in their tissues and products, shaping plant-insect interactions. Studies considering nutritional aspects of plant-insect interactions have focused on nonreproductive tissues and nectar. In this study, we consider pollen as serving a primary reproductive function for plants as well as a food of pollinivores. Plants might regulate K:Na in pollen to affect their interactions with pollinivorous pollinators. To investigate whether such a mechanism exists, we manipulated Na concentrations in soil and measured the proportion of K, Na, and 13 other nutrient elements in the pollen of two sunflower (Helianthus annuus) cultivars. This approach allowed us to account for the overall nutritional quality of pollen by investigating the proportions of many elements that could correlate with the concentrations of K and Na. Of the elements studied, only the concentrations of Na and K were highly correlated. Pollen K:Na was high in both cultivars irrespective of Na fertilization, and it remained high regardless of pollen Na concentration. Interestingly, pollen K:Na did not decrease as pollen increased the Na concentration. We hypothesize that high K:Na in pollen might benefit plant fertilization and embryonic development; therefore, a tradeoff might occur between producing low K:Na pollen as a reward for pollinators and high K:Na pollen to optimize the plant fertilization process. This is the first study to provide data on pollen K:Na regulation by plants. Our findings broaden the understanding of plant-bee interactions and provide a foundation for a better understanding of the role of the soil-plant-pollen-pollinator pathway in nutrient cycling in ecosystems. Specifically, unexplored costs and tradeoffs related to balancing the K:Na by plants and pollinivores might play a role in past and current shaping of pollination ecology.
RESUMEN
Laboratory bioassays on detached soybean, Glycine max (L.) Merr., leaves were used to test 23 fungicides, five insecticides, two acaricides, one herbicide, and two adjuvants on a key Australian predatory mite species Euseius victoriensis (Womersley) in "worst-case scenario" direct overspray assays. Zero- to 48-h-old juveniles, their initial food, and water supply were sprayed to runoff with a Potter tower; spinosad and wettable sulfur residues also were tested. Tests were standardized to deliver a pesticide dose comparable with commercial application of highest label rates at 1,000 liter/ha. Cumulative mortality was assessed 48 h, 4 d, and 7 d after spraying. Fecundity was assessed for 7 d from start of oviposition. No significant mortality or fecundity effects were detected for the following compounds at single-use application at 1,000 liter/ha: azoxystrobin, Bacillus thuringiensis (Bt) subsp. kurstaki, captan, chlorothalonil, copper hydroxide, fenarimol, glyphosate, hexaconazole, indoxacarb, metalaxyl/copper hydroxide, myclobutanil, nonyl phenol ethylene oxide, phosphorous acid, potassium bicarbonate, pyraclostrobin, quinoxyfen, spiroxamine, synthetic latex, tebufenozide, triadimenol, and trifloxystrobin. Iprodione and penconazole had some detrimental effect on fecundity. Canola oil as acaricide (2 liter/100 liter) and wettable sulfur (200 g/100 liter) had some detrimental effect on survival and fecundity and cyprodinil/fludioxonil on survivor. The following compounds were highly toxic (high 48-h mortality): benomyl, carbendazim, emamectin benzoate, mancozeb, spinosad (direct overspray and residue), wettable sulfur (> or = 400 g/100 liter), and pyrimethanil; pyrimethanil had no significant effect on fecundity of surviving females. Indoxacarb safety to E. victoriensis contrasts with its toxicity to key parasitoids and chrysopid predators. Potential impact of findings is discussed.
Asunto(s)
Ácaros/efectos de los fármacos , Oviparidad/efectos de los fármacos , Control Biológico de Vectores , Plaguicidas/farmacología , Animales , Femenino , Australia del Sur , Vitis/parasitologíaRESUMEN
In Central and North America, Australia and New Zealand, potato (Solanum tuberosum) crops are attacked by Bactericera cockerelli, the tomato potato psyllid (TPP). 'Mesh crop covers' which are used in Europe and Israel to protect crops from insect pests, have been used experimentally in New Zealand for TPP control. While the covers have been effective for TPP management, the green peach aphid (GPA, Myzus persicae) has been found in large numbers under the mesh crop covers. This study investigated the ability of the GPA to penetrate different mesh hole sizes. Experiments using four sizes (0.15 × 0.15, 0.15 × 0.35, 0.3 × 0.3 and 0.6 × 0.6 mm) were carried out under laboratory conditions to investigate: (i) which mesh hole size provided the most effective barrier to GPA; (ii) which morph of adult aphids (apterous or alate) and/or their progeny could breach the mesh crop cover; (iii) would leaves touching the underside of the cover, as opposed to having a gap between leaf and the mesh, increase the number of aphids breaching the mesh; and (iv) could adults feed on leaves touching the cover by putting only their heads and/or stylets through it? No adult aphids, either alate or apterous, penetrated the mesh crop cover; only nymphs did this, the majority being the progeny of alate adults. Nymphs of the smaller alatae aphids penetrated the three coarsest mesh sizes; nymphs of the larger apterae penetrated the two coarsest sizes, but no nymphs penetrated the smallest mesh size. There was no statistical difference in the number of aphids breaching the mesh crop cover when the leaflets touched its underside compared to when there was a gap between leaf and mesh crop cover. Adults did not feed through the mesh crop cover, though they may have been able to sense the potato leaflet using visual and/or olfactory cues and produce nymphs as a result. As these covers are highly effective for managing TPP on field potatoes, modifications of this protocol are required to make it effective against aphids as well as TPP.
RESUMEN
The benefits of shelter in increasing crop yields and accelerating ripening has been well researched in fruit, arable and horticultural crops. Its benefits to pasture, despite its importance for livestock production, is less well researched. In this work, Miscanthus shelterbelts were established on an intensively irrigated dairy farm. Seven key ecosystem services associated with these belts were identified and quantified. Pasture yield and quality were recorded in Miscanthus-sheltered and control field boundaries with little shelter. Pasture yield increased by up to 14% in the sheltered areas downwind of Miscanthus. Pasture quality was equivalent in the sheltered and open areas. Miscanthus provided more favourable nesting sites for bumblebees and for New Zealand endemic lizards (skinks) compared to field boundaries. The sheltered areas also had higher mineralisation rates of organic matter and higher numbers of earthworms. Using a high-yielding sterile grass such as Miscanthus to deliver a wide range of ecosystem services also produced a bioenergy feedstock. In conclusion, full benefits of shelterbelts to the farming system cannot be fully assessed unless direct and indirect benefits are properly assessed, as in this work.
Asunto(s)
Agricultura/métodos , Poaceae/crecimiento & desarrollo , Animales , Biocombustibles , Productos Agrícolas/crecimiento & desarrollo , Ecosistema , Granjas , Ganado/fisiología , Nueva ZelandaRESUMEN
The wheat bug, Nysius huttoni L. is an endemic New Zealand pest. The seedlings of forage brassicas are highly susceptible to direct feeding damage by this insect, and this can reduce plant establishment. Prophylactic use of pesticides is the usual practice for N. huttoni management. These practices have been linked to environmental pollution, biodiversity loss, and pollinator population declines in brassicas and other crops. Habitat management of the bug utilizing potential trap crops can be a better option for its management. A series of choice, no-choice, and paired-choice tests were conducted in a controlled-temperature room to evaluate the pest's preferences on seedlings of eight plant species. Kale plants (Brassica oleracea) were used as a potentially susceptible control, and seven non-kale plants were compared with kale as potential trap-plant species. These were: Lobularia maritima (L.) Desvaux (alyssum), Triticum aestivum L. (wheat), Phacelia tanacetifolia Bentham (phacelia), Fagopyrum esculentum Moench (buckwheat), Coriandrum sativum L. (coriander), Trifolium repens L. (white clover), and Medicago sativa L. (lucerne). In choice tests, wheat was the most suitable followed by alyssum, buckwheat, and phacelia, all significantly more favored than kale. In no-choice tests, alyssum was significantly more favored than kale and the other plant species except wheat and phacelia. First feeding damage was recorded on alyssum in both the above test conditions. For paired-choice tests including kale, wheat, and alyssum were significantly more suitable than brassica. These findings are important for developing agro-ecological management strategies. Alyssum followed by wheat were the most suitable trap plants for N. huttoni. These two plant species can be deployed in and around brassica fields either independently or as in a multiple trap-cropping system to reduce bug damage, minimizing or avoiding pesticides, and delivering a range of ecosystem services.
Asunto(s)
Hemípteros , Control de Insectos , Magnoliopsida , Animales , Preferencias Alimentarias , HerbivoriaRESUMEN
Ecological studies are increasingly moving towards trait-based approaches, as the evidence mounts that functions, as opposed to taxonomy, drive ecosystem service delivery. Among ecosystem services, biological control has been somewhat overlooked in functional ecological studies. This is surprising given that, over recent decades, much of biological control research has been focused on identifying the multiple characteristics (traits) of species that influence trophic interactions. These traits are especially well developed for interactions between arthropods and flowers - important for biological control, as floral resources can provide natural enemies with nutritional supplements, which can dramatically increase biological control efficiency. Traits that underpin the biological control potential of a community and that drive the response of arthropods to environmental filters, from local to landscape-level conditions, are also emerging from recent empirical studies. We present an overview of the traits that have been identified to (i) drive trophic interactions, especially between plants and biological control agents through determining access to floral resources and enhancing longevity and fecundity of natural enemies, (ii) affect the biological control services provided by arthropods, and (iii) limit the response of arthropods to environmental filters, ranging from local management practices to landscape-level simplification. We use this review as a platform to outline opportunities and guidelines for future trait-based studies focused on the enhancement of biological control services.
Asunto(s)
Agricultura/métodos , Conservación de los Recursos Naturales , Cadena Alimentaria , Control de Plagas/métodos , AnimalesRESUMEN
Human food security requires the production of sufficient quantities of both high-quality protein and dietary energy. In a series of case-studies from New Zealand, we show that while production of food ingredients from crops on arable land can meet human dietary energy requirements effectively, requirements for high-quality protein are met more efficiently by animal production from such land. We present a model that can be used to assess dietary energy and quality-corrected protein production from various crop and crop/animal production systems, and demonstrate its utility. We extend our analysis with an accompanying economic analysis of commercially-available, pre-prepared or simply-cooked foods that can be produced from our case-study crop and animal products. We calculate the per-person, per-day cost of both quality-corrected protein and dietary energy as provided in the processed foods. We conclude that mixed dairy/cropping systems provide the greatest quantity of high-quality protein per unit price to the consumer, have the highest food energy production and can support the dietary requirements of the highest number of people, when assessed as all-year-round production systems. Global food and nutritional security will largely be an outcome of national or regional agroeconomies addressing their own food needs. We hope that our model will be used for similar analyses of food production systems in other countries, agroecological zones and economies.
RESUMEN
Because ecological interactions are the first components of the ecosystem to be impacted by climate change, future forms of threatened-species and ecosystem management should aim at conserving complete, functioning communities rather than single charismatic species. A possible way forward is the deployment of ecosystem-scale translocation (EST), where above- and below-ground elements of a functioning terrestrial ecosystem (including vegetation and topsoil) are carefully collected and moved together. Small-scale attempts at such practice have been made for the purpose of ecological restoration. By moving larger subsets of functioning ecosystems from climatically unstable regions to more stable ones, EST could provide a practical means to conserve mature and complex ecosystems threatened by climate change. However, there are a number of challenges associated with EST in the context of climate change mitigation, in particular the choice of donor and receptor sites. With the aim of fostering discussion and debate about the EST concept, we 1) outline the possible promises and pitfalls of EST in mitigating the impact of climate change on terrestrial biodiversity and 2) use a GIS-based approach to illustrate how potential source and receptor sites, where EST could be trialed and evaluated globally, could be identified.
RESUMEN
Various environmental factors were investigated to analyse those involved in successful overwintering and possibly overwintering site selection for Tachyporus hypnorum and Demetrias atricapillus, both important coleopteran predators of cereal aphids. The results of the study indicated food supply to be important for both predator species during the winter period, although the role of biotic factors in site selection in the autumn could not be clearly demonstrated. The winter distribution of the two species could, however, be explained well in terms of abiotic factors. It is suggested that these and other similar predator species have well-defined overwintering requirements and that these can be exploited in the management of field boundary habitats.
RESUMEN
Predation is often difficult to observe or quantify for species that are rare, very small, aquatic or nocturnal. The assessment of such species' diet can be conducted using molecular methods that target prey DNA remaining in predators' guts and faeces. These techniques do not require high taxonomic expertise, are applicable to soft-bodied prey and allow for identification at the species level. However, for generalist predators, the presence of mixed prey DNA in guts and faeces can be a major impediment as it requires development of specific primers for each potential prey species for standard (Sanger) sequencing. Therefore, next generation sequencing methods have recently been applied to such situations. In this study, we used 454-pyrosequencing to analyse the diet of Powelliphantaaugusta, a carnivorous landsnail endemic to New Zealand and critically endangered after most of its natural habitat has been lost to opencast mining. This species was suspected to feed mainly on earthworms. Although earthworm tissue was not detectable in snail faeces, earthworm DNA was still present in sufficient quantity to conduct molecular analyses. Based on faecal samples collected from 46 landsnails, our analysis provided a complete map of the earthworm-based diet of P. augusta. Predated species appear to be earthworms that live in the leaf litter or earthworms that come to the soil surface at night to feed on the leaf litter. This indicates that P. augusta may not be selective and probably predates any earthworm encountered in the leaf litter. These findings are crucial for selecting future translocation areas for this highly endangered species. The molecular diet analysis protocol used here is particularly appropriate to study the diet of generalist predators that feed on liquid or soft-bodied prey. Because it is non-harmful and non-disturbing for the studied animals, it is also applicable to any species of conservation interest.
Asunto(s)
ADN/genética , Dieta , Especies en Peligro de Extinción , Oligoquetos/genética , Caracoles/fisiología , Animales , Biología Computacional , Cartilla de ADN/genética , Heces/química , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Nueva Zelanda , ARN Ribosómico 16S/genéticaRESUMEN
DNA barcoding remains a challenge when applied to diet analyses, ancient DNA studies, environmental DNA samples and, more generally, in any cases where DNA samples have not been adequately preserved. Because the size of the commonly used barcoding marker (COI) is over 600 base pairs (bp), amplification fails when the DNA molecule is degraded into smaller fragments. However, relevant information for specimen identification may not be evenly distributed along the barcoding region, and a shorter target can be sufficient for identification purposes. This study proposes a new, widely applicable, method to compare the performance of all potential 'mini-barcodes' for a given molecular marker and to objectively select the shortest and most informative one. Our method is based on a sliding window analysis implemented in the new R package SPIDER (Species IDentity and Evolution in R). This method is applicable to any taxon and any molecular marker. Here, it was tested on earthworm DNA that had been degraded through digestion by carnivorous landsnails. A 100 bp region of 16 S rDNA was selected as the shortest informative fragment (mini-barcode) required for accurate specimen identification. Corresponding primers were designed and used to amplify degraded earthworm (prey) DNA from 46 landsnail (predator) faeces using 454-pyrosequencing. This led to the detection of 18 earthworm species in the diet of the snail. We encourage molecular ecologists to use this method to objectively select the most informative region of the gene they aim to amplify from degraded DNA. The method and tools provided here, can be particularly useful (1) when dealing with degraded DNA for which only small fragments can be amplified, (2) for cases where no consensus has yet been reached on the appropriate barcode gene, or (3) to allow direct analysis of short reads derived from massively parallel sequencing without the need for bioinformatic consolidation.