Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Circ Res ; 134(10): 1330-1347, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38557119

RESUMEN

BACKGROUND: Tetraspanin CD151 is highly expressed in endothelia and reinforces cell adhesion, but its role in vascular inflammation remains largely unknown. METHODS: In vitro molecular and cellular biological analyses on genetically modified endothelial cells, in vivo vascular biological analyses on genetically engineered mouse models, and in silico systems biology and bioinformatics analyses on CD151-related events. RESULTS: Endothelial ablation of Cd151 leads to pulmonary and cardiac inflammation, severe sepsis, and perilous COVID-19, and endothelial CD151 becomes downregulated in inflammation. Mechanistically, CD151 restrains endothelial release of proinflammatory molecules for less leukocyte infiltration. At the subcellular level, CD151 determines the integrity of multivesicular bodies/lysosomes and confines the production of exosomes that carry cytokines such as ANGPT2 (angiopoietin-2) and proteases such as cathepsin-D. At the molecular level, CD151 docks VCP (valosin-containing protein)/p97, which controls protein quality via mediating deubiquitination for proteolytic degradation, onto endolysosomes to facilitate VCP/p97 function. At the endolysosome membrane, CD151 links VCP/p97 to (1) IFITM3 (interferon-induced transmembrane protein 3), which regulates multivesicular body functions, to restrain IFITM3-mediated exosomal sorting, and (2) V-ATPase, which dictates endolysosome pH, to support functional assembly of V-ATPase. CONCLUSIONS: Distinct from its canonical function in strengthening cell adhesion at cell surface, CD151 maintains endolysosome function by sustaining VCP/p97-mediated protein unfolding and turnover. By supporting protein quality control and protein degradation, CD151 prevents proteins from (1) buildup in endolysosomes and (2) discharge through exosomes, to limit vascular inflammation. Also, our study conceptualizes that balance between degradation and discharge of proteins in endothelial cells determines vascular information. Thus, the IFITM3/V-ATPase-tetraspanin-VCP/p97 complexes on endolysosome, as a protein quality control and inflammation-inhibitory machinery, could be beneficial for therapeutic intervention against vascular inflammation.


Asunto(s)
COVID-19 , Endosomas , Lisosomas , Tetraspanina 24 , Animales , Lisosomas/metabolismo , Tetraspanina 24/metabolismo , Tetraspanina 24/genética , Humanos , Ratones , COVID-19/metabolismo , COVID-19/inmunología , COVID-19/patología , Endosomas/metabolismo , Ratones Noqueados , Vasculitis/metabolismo , Ratones Endogámicos C57BL , SARS-CoV-2 , Inflamación/metabolismo , Inflamación/patología , Sepsis/metabolismo
2.
Cell Mol Life Sci ; 80(6): 154, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37204469

RESUMEN

Inflammation can impair intestinal barrier, while increased epithelial permeability can lead to inflammation. In this study, we found that the expression of Tspan8, a tetraspanin expressed specifically in epithelial cells, is downregulated in mouse model of ulcerative disease (UC) but correlated with those of cell-cell junction components, such as claudins and E-cadherin, suggesting that Tspan8 supports intestinal epithelial barrier. Tspan8 removal increases intestinal epithelial permeability and upregulates IFN-γ-Stat1 signaling. We also demonstrated that Tspan8 coalesces with lipid rafts and facilitates IFNγ-R1 localization at or near lipid rafts. As IFN-γ induces its receptor undergoing clathrin- or lipid raft-dependent endocytosis and IFN-γR endocytosis plays an important role in Jak-Stat1 signaling, our analysis on IFN-γR endocytosis revealed that Tspan8 silencing impairs lipid raft-mediated but promotes clathrin-mediated endocytosis of IFN-γR1, leading to increased Stat1 signaling. These changes in IFN-γR1 endocytosis upon Tspan8 silencing correlates with fewer lipid raft component GM1 at the cell surface and more clathrin heavy chain in the cells. Our findings indicate that Tspan8 determines the IFN-γR1 endocytosis route, to restrain Stat1 signaling, stabilize intestine epithelium, and subsequently prevent intestine from inflammation. Our finding also implies that Tspan8 is needed for proper endocytosis through lipid rafts.


Asunto(s)
Mucosa Intestinal , Receptores de Interferón , Tetraspaninas , Animales , Ratones , Clatrina/metabolismo , Endocitosis/fisiología , Inflamación/metabolismo , Interferones/metabolismo , Mucosa Intestinal/metabolismo , Receptores de Interferón/metabolismo , Tetraspaninas/genética , Tetraspaninas/metabolismo
3.
Ann Rheum Dis ; 82(9): 1181-1190, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37147113

RESUMEN

OBJECTIVE: Identify autoantibodies in anti-Ro/SS-A negative primary Sjögren's syndrome (SS). METHODS: This is a proof-of-concept, case-control study of SS, healthy (HC) and other disease (OD) controls. A discovery dataset of plasma samples (n=30 SS, n=15 HC) was tested on human proteome arrays containing 19 500 proteins. A validation dataset of plasma and stimulated parotid saliva from additional SS cases (n=46 anti-Ro+, n=50 anti-Ro-), HC (n=42) and OD (n=54) was tested on custom arrays containing 74 proteins. For each protein, the mean+3 SD of the HC value defined the positivity threshold. Differences from HC were determined by Fisher's exact test and random forest machine learning using 2/3 of the validation dataset for training and 1/3 for testing. Applicability of the results was explored in an independent rheumatology practice cohort (n=38 Ro+, n=36 Ro-, n=10 HC). Relationships among antigens were explored using Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) interactome analysis. RESULTS: Ro+ SS parotid saliva contained autoantibodies binding to Ro60, Ro52, La/SS-B and muscarinic receptor 5. SS plasma contained 12 novel autoantibody specificities, 11 of which were detected in both the discovery and validation datasets. Binding to ≥1 of the novel antigens identified 54% of Ro- SS and 37% of Ro+ SS cases, with 100% specificity in both groups. Machine learning identified 30 novel specificities showing receiver operating characteristic area under the curve of 0.79 (95% CI 0.64 to 0.93) for identifying Ro- SS. Sera from Ro- cases of an independent cohort bound 17 of the non-canonical antigens. Antigenic targets in both Ro+ and Ro- SS were part of leukaemia cell, ubiquitin conjugation and antiviral defence pathways. CONCLUSION: We identified antigenic targets of the autoantibody response in SS that may be useful for identifying up to half of Ro seronegative SS cases.


Asunto(s)
Autoanticuerpos , Síndrome de Sjögren , Humanos , Estudios de Casos y Controles , Autoantígenos , Curva ROC , Inmunoglobulina G , Anticuerpos Antinucleares
4.
Cell Mol Life Sci ; 79(7): 389, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35773608

RESUMEN

EWI2 is a transmembrane immunoglobulin superfamily (IgSF) protein that physically associates with tetraspanins and integrins. It inhibits cancer cells by influencing the interactions among membrane molecules including the tetraspanins and integrins. The present study revealed that, upon EWI2 silencing or ablation, the elevated movement and proliferation of cancer cells in vitro and increased cancer metastatic potential and malignancy in vivo are associated with (i) increases in clustering, endocytosis, and then activation of EGFR and (ii) enhancement of Erk MAP kinase signaling. These changes in signaling make cancer cells (i) undergo partial epithelial-to-mesenchymal (EMT) for more tumor progression and (ii) proliferate faster for better tumor formation. Inhibition of EGFR or Erk kinase can abrogate the cancer cell phenotypes resulting from EWI2 removal. Thus, to inhibit cancer cells, EWI2 prevents EGFR from clustering and endocytosis to restrain its activation and signaling.


Asunto(s)
Antígenos CD , Endocitosis , Receptores ErbB , Proteínas de la Membrana , Neoplasias , Antígenos CD/metabolismo , Línea Celular Tumoral , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Transición Epitelial-Mesenquimal , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Integrinas/metabolismo , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología
5.
J Am Soc Nephrol ; 33(4): 747-768, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35110364

RESUMEN

BACKGROUND: Inducible disruption of cilia-related genes in adult mice results in slowly progressive cystic disease, which can be greatly accelerated by renal injury. METHODS: To identify in an unbiased manner modifier cells that may be influencing the differential rate of cyst growth in injured versus non-injured cilia mutant kidneys at a time of similar cyst severity, we generated a single-cell atlas of cystic kidney disease. We conducted RNA-seq on 79,355 cells from control mice and adult-induced conditional Ift88 mice (hereafter referred to as cilia mutant mice) that were harvested approximately 7 months post-induction or 8 weeks post 30-minute unilateral ischemia reperfusion injury. RESULTS: Analyses of single-cell RNA-seq data of CD45+ immune cells revealed that adaptive immune cells differed more in cluster composition, cell proportion, and gene expression than cells of myeloid origin when comparing cystic models with one another and with non-cystic controls. Surprisingly, genetic deletion of adaptive immune cells significantly reduced injury-accelerated cystic disease but had no effect on cyst growth in non-injured cilia mutant mice, independent of the rate of cyst growth or underlying genetic mutation. Using NicheNet, we identified a list of candidate cell types and ligands that were enriched in injured cilia mutant mice compared with aged cilia mutant mice and non-cystic controls that may be responsible for the observed dependence on adaptive immune cells during injury-accelerated cystic disease. CONCLUSIONS: Collectively, these data highlight the diversity of immune cell involvement in cystic kidney disease.


Asunto(s)
Quistes , Enfermedades Renales Poliquísticas , Animales , Cilios/metabolismo , Quistes/genética , Riñón/metabolismo , Ratones , Mutación , Enfermedades Renales Poliquísticas/metabolismo
6.
Genes Dev ; 29(11): 1106-19, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26019175

RESUMEN

Fibrosis is a common disease process in which profibrotic cells disturb organ function by secreting disorganized extracellular matrix (ECM). Adipose tissue fibrosis occurs during obesity and is associated with metabolic dysfunction, but how profibrotic cells originate is still being elucidated. Here, we use a developmental model to investigate perivascular cells in white adipose tissue (WAT) and their potential to cause organ fibrosis. We show that a Nestin-Cre transgene targets perivascular cells (adventitial cells and pericyte-like cells) in WAT, and Nestin-GFP specifically labels pericyte-like cells. Activation of PDGFRα signaling in perivascular cells causes them to transition into ECM-synthesizing profibrotic cells. Before this transition occurs, PDGFRα signaling up-regulates mTOR signaling and ribosome biogenesis pathways and perturbs the expression of a network of epigenetically imprinted genes that have been implicated in cell growth and tissue homeostasis. Isolated Nestin-GFP(+) cells differentiate into adipocytes ex vivo and form WAT when transplanted into recipient mice. However, PDGFRα signaling opposes adipogenesis and generates profibrotic cells instead, which leads to fibrotic WAT in transplant experiments. These results identify perivascular cells as fibro/adipogenic progenitors in WAT and show that PDGFRα targets progenitor cell plasticity as a profibrotic mechanism.


Asunto(s)
Tejido Adiposo/citología , Tejido Adiposo/fisiopatología , Fibrosis/fisiopatología , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal , Adipogénesis/genética , Animales , Diferenciación Celular , Proliferación Celular , Trasplante de Células , Células Cultivadas , Regulación Neoplásica de la Expresión Génica , Ratones , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Células Madre/patología
7.
J Cell Sci ; 133(10)2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32295846

RESUMEN

Centrosomes focus microtubules to promote mitotic spindle bipolarity, a critical requirement for balanced chromosome segregation. Comprehensive understanding of centrosome function and regulation requires a complete inventory of components. While many centrosome components have been identified, others yet remain undiscovered. We have used a bioinformatics approach, based on 'guilt by association' expression to identify novel mitotic components among the large group of predicted human proteins that have yet to be functionally characterized. Here, we identify chondrosarcoma-associated gene 1 protein (CSAG1) in maintaining centrosome integrity during mitosis. Depletion of CSAG1 disrupts centrosomes and leads to multipolar spindles, particularly in cells with compromised p53 function. Thus, CSAG1 may reflect a class of 'mitotic addiction' genes, whose expression is more essential in transformed cells.


Asunto(s)
Condrosarcoma , Proteína p53 Supresora de Tumor , Antígenos de Neoplasias , Centrosoma , Humanos , Mitosis/genética , Proteínas de Neoplasias , Huso Acromático/genética , Proteína p53 Supresora de Tumor/genética
8.
J Pharmacol Exp Ther ; 2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35680377

RESUMEN

Oxidative damage is believed to play a major role in the etiology of many age-related diseases and the normal aging process. We previously reported that sulindac, a cyclooxygenase (COX) inhibitor and FDA approved anti-inflammatory drug, has chemoprotective activity in cells and intact organs by initiating a pharmacological preconditioning response, similar to ischemic preconditioning (IPC). The mechanism is independent of its COX inhibitory activity as suggested by studies on the protection of the heart against oxidative damage from ischemia/reperfusion and retinal pigmented endothelial (RPE) cells against chemical oxidative and UV damage . Unfortunately, sulindac is not recommended for long-term use due to toxicities resulting from its COX inhibitory activity. To develop a safer and more efficacious derivative of sulindac, we screened a library of indenes and identified a lead compound, MCI-100, that lacked significant COX inhibitory activity but displayed greater potency than sulindac to protect RPE cells against oxidative damage. MCI-100 also protected the intact rat heart against ischemia/reperfusion damage following oral administration. The chemoprotective activity of MCI-100 involves a preconditioning response similar to sulindac, which is supported by RNA sequencing data showing common genes that are induced or repressed by sulindac or MCI-100 treatment. Both sulindac and MCI-100 protection against oxidative damage may involve modulation of Wnt/ß-catenin signaling resulting in proliferation while inhibiting TGFb signaling leading to apoptosis. In summary MCI-100, is more active than sulindac in protecting cells against oxidative damage, but without significant NSAID activity, and could have therapeutic potential in treatment of diseases that involve oxidative damage. Significance Statement In this study, we describe a novel sulindac derivative, MCI-100, that lacks significant COX inhibitory activity, but is appreciably more potent than sulindac in protecting retinal pigmented epithelial (RPE) cells against oxidative damage. Oral administration of MCI-100 markedly protected the rat heart against ischemia/reperfusion damage. MCI-100 has potential therapeutic value as a drug candidate for age-related diseases by protecting cells against oxidative damage and preventing organ failure.

9.
Ann Rheum Dis ; 81(10): 1428-1437, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35710306

RESUMEN

OBJECTIVES: Lupus T cells demonstrate aberrant DNA methylation patterns dominated by hypomethylation of interferon-regulated genes. The objective of this study was to identify additional lupus-associated DNA methylation changes and determine the genetic contribution to epigenetic changes characteristic of lupus. METHODS: Genome-wide DNA methylation was assessed in naïve CD4+ T cells from 74 patients with lupus and 74 age-matched, sex-matched and race-matched healthy controls. We applied a trend deviation analysis approach, comparing methylation data in our cohort with over 16 500 samples. Methylation quantitative trait loci (meQTL) analysis was performed by integrating methylation profiles with genome-wide genotyping data. RESULTS: In addition to the previously reported epigenetic signature in interferon-regulated genes, we observed hypomethylation in the promoter region of the miR-17-92 cluster in patients with lupus. Members of this microRNA cluster play an important role in regulating T cell proliferation and differentiation. Expression of two microRNAs in this cluster, miR-19b1 and miR-18a, showed a significant positive correlation with lupus disease activity. Among miR-18a target genes, TNFAIP3, which encodes a negative regulator of nuclear factor kappa B, was downregulated in lupus CD4+ T cells. MeQTL identified in lupus patients showed overlap with genetic risk loci for lupus, including CFB and IRF7. The lupus risk allele in IRF7 (rs1131665) was associated with significant IRF7 hypomethylation. However, <1% of differentially methylated CpG sites in patients with lupus were associated with an meQTL, suggesting minimal genetic contribution to lupus-associated epigenotypes. CONCLUSION: The lupus defining epigenetic signature, characterised by robust hypomethylation of interferon-regulated genes, does not appear to be determined by genetic factors. Hypomethylation of the miR-17-92 cluster that plays an important role in T cell activation is a novel epigenetic locus for lupus.


Asunto(s)
Lupus Eritematoso Sistémico , MicroARNs , Linfocitos T , Linfocitos T CD4-Positivos/metabolismo , Metilación de ADN/genética , Epigénesis Genética/genética , Epigenómica , Humanos , Interferones/genética , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/metabolismo , MicroARNs/genética , MicroARNs/metabolismo
10.
EMBO Rep ; 21(10): e48483, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32851774

RESUMEN

MICU1 is a mitochondrial inner membrane protein that inhibits mitochondrial calcium entry; elevated MICU1 expression is characteristic of many cancers, including ovarian cancer. MICU1 induces both glycolysis and chemoresistance and is associated with poor clinical outcomes. However, there are currently no available interventions to normalize aberrant MICU1 expression. Here, we demonstrate that microRNA-195-5p (miR-195) directly targets the 3' UTR of the MICU1 mRNA and represses MICU1 expression. Additionally, miR-195 is under-expressed in ovarian cancer cell lines, and restoring miR-195 expression reestablishes native MICU1 levels and the associated phenotypes. Stable expression of miR-195 in a human xenograft model of ovarian cancer significantly reduces tumor growth, increases tumor doubling times, and enhances overall survival. In conclusion, miR-195 controls MICU1 levels in ovarian cancer and could be exploited to normalize aberrant MICU1 expression, thus reversing both glycolysis and chemoresistance and consequently improving patient outcomes.


Asunto(s)
Proteínas de Transporte de Catión , MicroARNs , Neoplasias Ováricas , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Glucólisis/genética , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Neoplasias Ováricas/genética
11.
Am J Respir Cell Mol Biol ; 64(4): 426-440, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33444514

RESUMEN

Chronic obstructive pulmonary disease (COPD) is the third leading cause of death in the United States and is primarily caused by cigarette smoking. Increased numbers of mucus-producing secretory ("goblet") cells, defined as goblet cell metaplasia or hyperplasia (GCMH), contributes significantly to COPD pathophysiology. The objective of this study was to determine whether NOTCH signaling regulates goblet cell differentiation in response to cigarette smoke. Primary human bronchial epithelial cells (HBECs) from nonsmokers and smokers with COPD were differentiated in vitro on air-liquid interface and exposed to cigarette smoke extract (CSE) for 7 days. NOTCH signaling activity was modulated using 1) the NOTCH/γ-secretase inhibitor dibenzazepine (DBZ), 2) lentiviral overexpression of the NICD3 (NOTCH3-intracellular domain), or 3) NOTCH3-specific siRNA. Cell differentiation and response to CSE were evaluated by quantitative PCR, Western blotting, immunostaining, and RNA sequencing. We found that CSE exposure of nonsmoker airway epithelium induced goblet cell differentiation characteristic of GCMH. Treatment with DBZ suppressed CSE-dependent induction of goblet cell differentiation. Furthermore, CSE induced NOTCH3 activation, as revealed by increased NOTCH3 nuclear localization and elevated NICD3 protein levels. Overexpression of NICD3 increased the expression of goblet cell-associated genes SPDEF and MUC5AC, whereas NOTCH3 knockdown suppressed CSE-mediated induction of SPDEF and MUC5AC. Finally, CSE exposure of COPD airway epithelium induced goblet cell differentiation in a NOTCH3-dependent manner. These results identify NOTCH3 activation as one of the important mechanisms by which cigarette smoke induces goblet cell differentiation, thus providing a novel potential strategy to control GCMH-related pathologies in smokers and patients with COPD.


Asunto(s)
Bronquios/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Fumar Cigarrillos/efectos adversos , Células Caliciformes/efectos de los fármacos , Enfermedad Pulmonar Obstructiva Crónica/etiología , Receptor Notch3/agonistas , Humo/efectos adversos , Productos de Tabaco/efectos adversos , Bronquios/metabolismo , Bronquios/patología , Estudios de Casos y Controles , Células Cultivadas , Células Caliciformes/metabolismo , Células Caliciformes/patología , Humanos , No Fumadores , Cultivo Primario de Células , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología , Receptor Notch3/genética , Receptor Notch3/metabolismo , Transducción de Señal , Fumadores , Factores de Tiempo , Transcriptoma
12.
J Biol Chem ; 295(44): 14866-14877, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-32817168

RESUMEN

Group 2 innate lymphoid cells (ILC2s) represent a subset of newly discovered immune cells that are involved in immune reactions against microbial pathogens, host allergic reactions, as well as tissue repair. The basic helix-loop-helix transcription factors collectively called E proteins powerfully suppress the differentiation of ILC2s from bone marrow and thymic progenitors while promoting the development of B and T lymphocytes. How E proteins exert the suppression is not well understood. Here we investigated the underlying molecular mechanisms using inducible gain and loss of function approaches in ILC2s and their precursors, respectively. Cross-examination of RNA-seq and ATAC sequencing data obtained at different time points reveals a set of genes that are likely direct targets of E proteins. Consequently, a widespread down-regulation of chromatin accessibility occurs at a later time point, possibly due to the activation of transcriptional repressor genes such as Cbfa2t3 and Jdp2 The large number of genes repressed by gain of E protein function leads to the down-regulation of a transcriptional network important for ILC2 differentiation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Redes Reguladoras de Genes , Inmunidad Innata , Linfocitos/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Línea Celular , Cromatina/metabolismo , Expresión Génica , Linfocitos/citología , Linfocitos/inmunología , Ratones
13.
Genet Med ; 23(10): 1933-1943, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34172899

RESUMEN

PURPOSE: Pathogenic variants in Lysyl-tRNA synthetase 1 (KARS1) have increasingly been recognized as a cause of early-onset complex neurological phenotypes. To advance the timely diagnosis of KARS1-related disorders, we sought to delineate its phenotype and generate a disease model to understand its function in vivo. METHODS: Through international collaboration, we identified 22 affected individuals from 16 unrelated families harboring biallelic likely pathogenic or pathogenic in KARS1 variants. Sequencing approaches ranged from disease-specific panels to genome sequencing. We generated loss-of-function alleles in zebrafish. RESULTS: We identify ten new and four known biallelic missense variants in KARS1 presenting with a moderate-to-severe developmental delay, progressive neurological and neurosensory abnormalities, and variable white matter involvement. We describe novel KARS1-associated signs such as autism, hyperactive behavior, pontine hypoplasia, and cerebellar atrophy with prevalent vermian involvement. Loss of kars1 leads to upregulation of p53, tissue-specific apoptosis, and downregulation of neurodevelopmental related genes, recapitulating key tissue-specific disease phenotypes of patients. Inhibition of p53 rescued several defects of kars1-/- knockouts. CONCLUSION: Our work delineates the clinical spectrum associated with KARS1 defects and provides a novel animal model for KARS1-related human diseases revealing p53 signaling components as potential therapeutic targets.


Asunto(s)
Pérdida Auditiva , Lisina-ARNt Ligasa/genética , Trastornos del Neurodesarrollo , Alelos , Animales , Modelos Animales de Enfermedad , Pérdida Auditiva/genética , Humanos , Trastornos del Neurodesarrollo/genética , Fenotipo , Pez Cebra/genética
14.
FASEB J ; 34(2): 2287-2300, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31908025

RESUMEN

Using a systems biology approach to prioritize potential points of intervention in ovarian cancer, we identified the lysine rich coiled-coil 1 (KRCC1), as a potential target. High-grade serous ovarian cancer patient tumors and cells express significantly higher levels of KRCC1 which correlates with poor overall survival and chemoresistance. We demonstrate that KRCC1 is predominantly present in the chromatin-bound nuclear fraction, interacts with HDAC1, HDAC2, and with the serine-threonine phosphatase PP1CC. Silencing KRCC1 inhibits cellular plasticity, invasive properties, and potentiates apoptosis resulting in reduced tumor growth. These phenotypes are associated with increased acetylation of histones and with increased phosphorylation of H2AX and CHK1, suggesting the modulation of transcription and DNA damage that may be mediated by the action of HDAC and PP1CC, respectively. Hence, we address an urgent need to develop new targets in cancer.


Asunto(s)
Daño del ADN , Péptidos y Proteínas de Señalización Intracelular , Proteínas de Neoplasias , Neoplasias Ováricas , Transcripción Genética , Línea Celular Tumoral , Femenino , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/genética , Histona Desacetilasa 2/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Neoplasias Ováricas/terapia , Fosforilación , Factores de Riesgo
15.
Nucleic Acids Res ; 47(D1): D39-D45, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30329086

RESUMEN

The human genome harbors an abundance of repetitive DNA; however, its function continues to be debated. Microsatellites-a class of short tandem repeat-are established as an important source of genetic variation. Array length variants are common among microsatellites and affect gene expression; but, efforts to understand the role and diversity of microsatellite variation has been hampered by several challenges. Without adequate depth, both long-read and short-read sequencing may not detect the variants present in a sample; additionally, large sample sizes are needed to reveal the degree of population-level polymorphism. To address these challenges we present the Comparative Analysis of Germline Microsatellites (CAGm): a database of germline microsatellites from 2529 individuals in the 1000 genomes project. A key novelty of CAGm is the ability to aggregate microsatellite variation by population, ethnicity (super population) and gender. The database provides advanced searching for microsatellites embedded in genes and functional elements. All data can be downloaded as Microsoft Excel spreadsheets. Two use-case scenarios are presented to demonstrate its utility: a mononucleotide (A) microsatellite at the BAT-26 locus and a dinucleotide (CA) microsatellite in the coding region of FGFRL1. CAGm is freely available at http://www.cagmdb.org/.


Asunto(s)
Bases de Datos Genéticas , Variación Genética , Genoma Humano , Genómica , Células Germinativas/metabolismo , Repeticiones de Microsatélite , Femenino , Genómica/métodos , Humanos , Masculino , Navegador Web
16.
J Cell Mol Med ; 24(2): 1738-1749, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31863639

RESUMEN

Glioblastoma is an aggressive brain tumour found in adults, and the therapeutic approaches available have not significantly increased patient survival. Recently, we discovered that ELTD1, an angiogenic biomarker, is highly expressed in human gliomas. Polyclonal anti-ELTD1 treatments were effective in glioma pre-clinical models, however, pAb binding is potentially promiscuous. Therefore, the aim of this study was to determine the effects of an optimized monoclonal anti-ELTD1 treatment in G55 xenograft glioma models. MRI was used to assess the effects of the treatments on animal survival, tumour volumes, perfusion rates and binding specificity. Immunohistochemistry and histology were conducted to confirm and characterize microvessel density and Notch1 levels, and to locate the molecular probes. RNA-sequencing was used to analyse the effects of the mAb treatment. Our monoclonal anti-ELTD1 treatment significantly increased animal survival, reduced tumour volumes, normalized the vasculature and showed higher binding specificity within the tumour compared with both control- and polyclonal-treated mice. Notch1 positivity staining and RNA-seq results suggested that ELTD1 has the ability to interact with and interrupt Notch1 signalling. Although little is known about ELTD1, particularly about its ligand and pathways, our data suggest that our monoclonal anti-ELTD1 antibody is a promising anti-angiogenic therapeutic in glioblastomas.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Receptores Acoplados a Proteínas G/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Anticuerpos Monoclonales/farmacología , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Pollos , Glioblastoma/patología , Humanos , Ratones , Microvasos/efectos de los fármacos , Microvasos/patología , Receptores Notch/metabolismo , Carga Tumoral/efectos de los fármacos
17.
Genome Res ; 27(8): 1406-1416, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28512193

RESUMEN

In dividing cells, DNA replication occurs in a precise order, but many questions remain regarding the mechanisms of replication timing establishment and regulation. We now have generated genome-wide, high-resolution replication timing maps throughout zebrafish development. Unexpectedly, in the rapid cell cycles preceding the midblastula transition, a defined timing program was present that predicted the initial wave of zygotic transcription. Replication timing was thereafter progressively and continuously remodeled across the majority of the genome, and epigenetic changes involved in enhancer activation frequently paralleled developmental changes in replication timing. The long arm of Chromosome 4 underwent a dramatic developmentally regulated switch to late replication during gastrulation, reminiscent of mammalian X Chromosome inactivation. This study reveals that replication timing is dynamic and tightly linked to epigenetic and transcriptional changes throughout early zebrafish development. These data provide insight into the regulation and functions of replication timing and will enable further mechanistic studies.


Asunto(s)
Momento de Replicación del ADN , Embrión no Mamífero/metabolismo , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Transcripción Genética , Pez Cebra/crecimiento & desarrollo , Pez Cebra/genética , Animales , Embrión no Mamífero/citología , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
18.
Wound Repair Regen ; 28(4): 448-459, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32175700

RESUMEN

Signal transducer and activator of transcription 1 (Stat1) is a ubiquitously expressed latent transcription factor that is activated by many cytokines and growth factors. Global Stat1 knockout mice are prone to chemical-induced lung and liver fibrosis, suggesting roles for Stat1 in tissue repair. However, the importance of Stat1 in fibroblast-mediated and vascular smooth muscle cell (VSMC)-mediated injury response has not been directly evaluated in vivo. Here, we focused on two models of tissue repair in conditional Stat1 knockout mice: excisional skin wounding in mice with Stat1 deletion in dermal fibroblasts, and carotid artery ligation in mice with global Stat1 deletion or deletion specific to VSMCs. In the skin model, dermal wounds closed at a similar rate in mice with fibroblast Stat1 deletion and controls, but collagen and α-smooth muscle actin (αSMA) expression were increased in the mutant granulation tissue. Cultured Stat1 -/- and Stat1 +/- dermal fibroblasts exhibited similar αSMA+ stress fiber assembly, collagen gel contraction, proliferation, migration, and growth factor-induced gene expression. In the artery ligation model, there was a significant increase in fibroblast-driven perivascular fibrosis when Stat1 was deleted globally. However, VSMC-driven remodeling and neointima formation were unchanged when Stat1 was deleted specifically in VSMCs. These results suggest an in vivo role for Stat1 as a suppressor of fibroblast mediated, but not VSMC mediated, injury responses, and a suppressor of the myofibroblast phenotype.


Asunto(s)
Arterias Carótidas/metabolismo , Fibroblastos/metabolismo , Miocitos del Músculo Liso/metabolismo , Miofibroblastos/metabolismo , Repitelización/genética , Factor de Transcripción STAT1/genética , Piel/metabolismo , Actinas/metabolismo , Animales , Traumatismos de las Arterias Carótidas/metabolismo , Movimiento Celular/genética , Proliferación Celular/genética , Colágeno/metabolismo , Regulación de la Expresión Génica/genética , Tejido de Granulación/metabolismo , Ratones , Ratones Noqueados , Músculo Liso Vascular/metabolismo , Fenotipo , Cicatrización de Heridas/genética
19.
Int J Mol Sci ; 22(1)2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33375170

RESUMEN

Sarcopenia has a significant negative impact on healthspan in the elderly and effective pharmacologic interventions remain elusive. We have previously demonstrated that sarcopenia is associated with reduced activity of the sarcoplasmic reticulum Ca2+ ATPase (SERCA) pump. We asked whether restoring SERCA activity using pharmacologic activation in aging mice could mitigate the sarcopenia phenotype. We treated 16-month male C57BL/6J mice with vehicle or CDN1163, an allosteric SERCA activator, for 10 months. At 26 months, maximal SERCA activity was reduced 41% in gastrocnemius muscle in vehicle-treated mice but maintained in old CDN1163 treated mice. Reductions in gastrocnemius mass (9%) and in vitro specific force generation in extensor digitorum longus muscle (11%) in 26 versus 16-month-old wild-type mice were also reversed by CDN1163. CDN1163 administered by intra-peritoneal injection also prevented the increase in mitochondrial ROS production in gastrocnemius muscles of aged mice. Transcriptomic analysis revealed that these effects are at least in part mediated by enhanced cellular energetics by activation of PGC1-α, UCP1, HSF1, and APMK and increased regenerative capacity by suppression of MEF2C and p38 MAPK signaling. Together, these exciting findings are the first to support that pharmacological targeting of SERCA can be an effective therapy to counter age-related muscle dysfunction.


Asunto(s)
Aminoquinolinas/farmacología , Benzamidas/farmacología , Debilidad Muscular/prevención & control , Atrofia Muscular/prevención & control , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Factores de Edad , Aminoquinolinas/administración & dosificación , Animales , Benzamidas/administración & dosificación , Activación Enzimática/efectos de los fármacos , Inyecciones Intraperitoneales , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/metabolismo , Debilidad Muscular/fisiopatología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/fisiopatología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Especies Reactivas de Oxígeno/metabolismo , Proteína Desacopladora 1/metabolismo
20.
BMC Bioinformatics ; 20(Suppl 2): 96, 2019 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-30871469

RESUMEN

BACKGROUND: The number of publicly available metagenomic experiments in various environments has been rapidly growing, empowering the potential to identify similar shifts in species abundance between different experiments. This could be a potentially powerful way to interpret new experiments, by identifying common themes and causes behind changes in species abundance. RESULTS: We propose a novel framework for comparing microbial shifts between conditions. Using data from one of the largest human metagenome projects to date, the American Gut Project (AGP), we obtain differential abundance vectors for microbes using experimental condition information provided with the AGP metadata, such as patient age, dietary habits, or health status. We show it can be used to identify similar and opposing shifts in microbial species, and infer putative interactions between microbes. Our results show that groups of shifts with similar effects on microbiome can be identified and that similar dietary interventions display similar microbial abundance shifts. CONCLUSIONS: Without comparison to prior data, it is difficult for experimentalists to know if their observed changes in species abundance have been observed by others, both in their conditions and in others they would never consider comparable. Yet, this can be a very important contextual factor in interpreting the significance of a shift. We've proposed and tested an algorithmic solution to this problem, which also allows for comparing the metagenomic signature shifts between conditions in the existing body of data.


Asunto(s)
Metagenómica/métodos , Microbiota/genética , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA