Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
Nature ; 608(7923): 518-522, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35978127

RESUMEN

Photoelectrochemical (PEC) artificial leaves hold the potential to lower the costs of sustainable solar fuel production by integrating light harvesting and catalysis within one compact device. However, current deposition techniques limit their scalability1, whereas fragile and heavy bulk materials can affect their transport and deployment. Here we demonstrate the fabrication of lightweight artificial leaves by employing thin, flexible substrates and carbonaceous protection layers. Lead halide perovskite photocathodes deposited onto indium tin oxide-coated polyethylene terephthalate achieved an activity of 4,266 µmol H2 g-1 h-1 using a platinum catalyst, whereas photocathodes with a molecular Co catalyst for CO2 reduction attained a high CO:H2 selectivity of 7.2 under lower (0.1 sun) irradiation. The corresponding lightweight perovskite-BiVO4 PEC devices showed unassisted solar-to-fuel efficiencies of 0.58% (H2) and 0.053% (CO), respectively. Their potential for scalability is demonstrated by 100 cm2 stand-alone artificial leaves, which sustained a comparable performance and stability (of approximately 24 h) to their 1.7 cm2 counterparts. Bubbles formed under operation further enabled 30-100 mg cm-2 devices to float, while lightweight reactors facilitated gas collection during outdoor testing on a river. This leaf-like PEC device bridges the gulf in weight between traditional solar fuel approaches, showcasing activities per gram comparable to those of photocatalytic suspensions and plant leaves. The presented lightweight, floating systems may enable open-water applications, thus avoiding competition with land use.

2.
Chemistry ; 30(28): e202303872, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38477400

RESUMEN

Owing to its high natural abundance compared to the commonly used transition (precious) metals, as well as its high Lewis acidity and ability to change oxidation state, aluminium has recently been explored as the basis for a range of single-site catalysts. This paper aims to establish the ground rules for the development of a new type of cationic alkene oligomerisation catalyst containing two Al(III) ions, with the potential to act co-operatively in stereoselective assembly. Five new dimers of the type [R2Al(2-py')]2 (R=Me, iBu; py'=substituted pyridyl group) with different substituents on the Al atoms and pyridyl rings have been synthesised. The formation of the undesired cis isomers can be suppressed by the presence of substituents on the 6-position of the pyridyl ring due to steric congestion, with DFT calculations showing that the selection of the trans isomer is thermodynamically controlled. Calculations show that demethylation of the dimers [Me2Al(2-py')]2 with Ph3C+ to the cations [{MeAl(2-py')}2(µ-Me)]+ is highly favourable and that the desired trans disposition of the 2-pyridyl ring units is influenced by steric effects. Preliminary experimental studies confirm that demethylation of [Me2Al(6-MeO-2-py)]2 can be achieved using [Ph3C][B(C6F5)4].

3.
Small ; 19(45): e2303359, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37415549

RESUMEN

This work presents a new strategy to achieve highly stable electrochromic devices and bilayer film construction. A novel solution-processable electrochromic polymer P1-Boc with quinacridone as the conjugated backbone and t-Boc as N-substituted non-conjugated solubilizing groups is designed. Thermal annealing of P1-Boc film results in the cleavage of t-Boc groups and the formation of N─H⋯O═C hydrogen-bonding crosslinked network, which changes its intrinsic solubility characteristics into a solvent-resistant P1 film. This film retains the electrochemical behavior and spectroelectrochemistry properties of the original P1-Boc film. Intriguingly, the electrochromic device based on the P1 film exhibits an ultrafast switching time (0.56/0.80 s at 523 nm) and robust electrochromic stability (retaining 88.4% of the initial optical contrast after 100 000 cycles). The observed cycle lifetime is one of the highest reported for all-organic electrochromic devices. In addition, a black-transparent bilayer electrochromic film P1/P2 is developed in which the use of the solvent-resistant P1 film as the bottom layer avoids interface erosion of the solution-processable polymer in a multilayer stacking.

4.
Inorg Chem ; 62(11): 4625-4636, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36883367

RESUMEN

The substitution of heavier, more metallic atoms into classical organic ligand frameworks provides an important strategy for tuning ligand properties, such as ligand bite and donor character, and is the basis for the emerging area of main-group supramolecular chemistry. In this paper, we explore two new ligands [E(2-Me-8-qy)3] [E = Sb (1), Bi (2); qy = quinolyl], allowing a fundamental comparison of their coordination behavior with classical tris(2-pyridyl) ligands of the type [E'(2-py)3] (E = a range of bridgehead atoms and groups, py = pyridyl). A range of new coordination modes to Cu+, Ag+, and Au+ is seen for 1 and 2, in the absence of steric constraints at the bridgehead and with their more remote N-donor atoms. A particular feature is the adaptive nature of these new ligands, with the ability to adjust coordination mode in response to the hard-soft character of coordinated metal ions, influenced also by the character of the bridgehead atom (Sb or Bi). These features can be seen in a comparison between [Cu2{Sb(2-Me-8-qy)3}2](PF6)2 (1·CuPF6) and [Cu{Bi(2-Me-8-qy)3}](PF6) (2·CuPF6), the first containing a dimeric cation in which 1 adopts an unprecedented intramolecular N,N,Sb-coordination mode while in the second, 2 adopts an unusual N,N,(π-)C coordination mode. In contrast, the previously reported analogous ligands [E(6-Me-2-py)3] (E = Sb, Bi; 2-py = 2-pyridyl) show a tris-chelating mode in their complexes with CuPF6, which is typical for the extensive tris(2-pyridyl) family with a range of metals. The greater polarity of the Bi-C bond in 2 results in ligand transfer reactions with Au(I). Although this reactivity is not in itself unusual, the characterization of several products by single-crystal X-ray diffraction provides snapshots of the ligand transfer reaction involved, with one of the products (the bimetallic complex [(BiCl){ClAu2(2-Me-8-qy)3}] (8)) containing a Au2Bi core in which the shortest Au → Bi donor-acceptor bond to date is observed.

5.
Inorg Chem ; 61(48): 19203-19219, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36384021

RESUMEN

Single-source precursors are ubiquitous in a number of areas of chemistry and material science due to their ease of use and wide range of potential applications. The development of new single-source precursors is essential in providing entries to new areas of chemistry. In this work, we synthesize nine new structurally related bimetallic metal-zirconium alkoxides, which can be used as single-source precursors to zirconia-based materials. Detailed analysis of the structures of these complexes provides important insights into the main factors influencing their aggregation. Investigation of the thermal decomposition of these species by TGA, PXRD, SEM, and EDS reveals that they can be used to produce bimetal oxides, such as Li2ZrO3, or a mixture of metal oxides, such as CuO and ZrO2. Significantly, these studies show that thermodynamically unstable forms of zirconia, such as the tetragonal phase, can be stabilized by metal doping, providing the promise for targeted deposition of zirconia materials for specific applications.

6.
Inorg Chem ; 61(16): 6223-6233, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35412823

RESUMEN

The fabrication of mixed-metal oxide films holds promise for the development of practical photoelectrochemical catalyst coatings but currently presents challenges in terms of homogeneity, cost, and scalability. We report a straightforward and versatile approach to produce catalytically active zirconium-based films for electrochemical and photoelectrochemical water oxidation. The mixed-metal oxide catalyst films are derived from novel single-source precursor oxide cage compounds containing Zr with first-row transition metals such as Co, Fe, and Cu. The Zr-based film doped with Co on fluorine-doped tin oxide (FTO)-coated glass exhibits the highest electrocatalytic O2 evolution performance in an alkaline medium and an operational stability above 18 h. The deposition of this film onto a BiVO4 photoanode significantly enhances its photoelectrochemical activity toward solar water oxidation, lowering the onset potential by 0.12-0.21 V vs reversible hydrogen electrode (RHE) and improving the maximum photocurrent density by ∼50% to 2.41 mA cm-2 for the CoZr-coated BiVO4 photoanodes compared to that for bare BiVO4.

7.
Angew Chem Int Ed Engl ; 61(32): e202202133, 2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35415950

RESUMEN

Sodium-ion batteries (SIBs) are a promising grid-level storage technology due to the abundance and low cost of sodium. The development of new electrolytes for SIBs is imperative since it impacts battery life and capacity. Currently, sodium hexafluorophosphate (NaPF6 ) is used as the benchmark salt, but is highly hygroscopic and generates toxic HF. This work describes the synthesis of a series of sodium borate salts, with electrochemical studies revealing that Na[B(hfip)4 ]⋅DME (hfip=hexafluoroisopropyloxy, Oi PrF ) and Na[B(pp)2 ] (pp=perfluorinated pinacolato, O2 C2 (CF3 )4 ) have excellent electrochemical performance. The [B(pp)2 ]- anion also exhibits a high tolerance to air and water. Both electrolytes give more stable electrode-electrolyte interfaces than conventionally used NaPF6 , as demonstrated by impedance spectroscopy and cyclic voltammetry. Furthermore, they give greater cycling stability and comparable capacity to NaPF6 for SIBs, as shown in commercial pouch cells.

8.
Chemistry ; 27(1): 289-297, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-32602605

RESUMEN

Phosph(III)azanes, featuring the heterocyclobutane P2 N2 ring, have now been established as building blocks in main-group coordination and supramolecular compounds. Previous studies have largely involved their use as neutral P-donor ligands or as anionic N-donor ligands, derived from deprotonation of amido-phosphazanes [RNHP(µ-NR)]2 . The use of neutral amido-phosphazanes themselves as chelating, H-bond donors in anion receptors has also been an area of recent interest because of the ease by which the proton acidity and anion binding constants can be modulated, by the incorporation of electron-withdrawing exo- and endo-cyclic groups (R) and by the coordination of transition metals to the ring P atoms. We observed recently that the effect of P,N-chelation of metal atoms to the P atoms of cis-[(2-py)NHP(µ-Nt Bu)]2 (2-py=2-pyridyl) not only pre-organises the N-H functionality for optimum H-bonding to anions but also results in a large increase in anion binding constants, well above those for traditional organic receptors like squaramides and ureas. Here, we report a broader investigation of ligand chemistry of [(2-py)NHP(µ-t NBu)]2 (and of the new quinolyl derivative [(8-Qu)NHP(µ-Nt Bu)]2 (8-Qu=8-quinolyl). The additional N-donor functionality of the heterocyclic substituents and its position has a marked effect on the anion and metal coordination chemistry of both species, leading to novel structural behaviour and reactivity compared to unfunctionalized counterparts.

9.
Chemistry ; 27(47): 12036-12040, 2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34128570

RESUMEN

Supramolecular main group chemistry is a developing field which parallels the conventional domain of metallo-organic chemistry. Little explored building blocks in this area are main group metal-based ligands which have the appropriate donor symmetry to build desired molecular or extended arrangements. Tris(pyridyl) main group ligands (E(py)3 , E=main group metal) are potentially highly versatile building blocks since shifting the N-donor arms from the 2- to the 3-positions and 4-positions provides a very simple way of changing the ligand character from mononuclear/chelating to multidentate/metal-bridging. Here, the coordination behaviour of the first main group metal tris(4-pyridyl) ligands, E(4-py)3 (E=Sb, Bi, Ph-Sn) is explored, as well as their ability to build metal-organic frameworks (MOFs). The complicated topology of these MOFs shows a marked influence on the counter anion and on the ability of the E(4-py)3 ligands to switch coordination mode, depending on the steric and donor character of the bridgehead. This structure-directing influence of the bridgehead provides a potential building strategy for future molecular and MOF design in this area.

10.
Inorg Chem ; 60(24): 19206-19218, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34882394

RESUMEN

The use of antimony and bismuth in supramolecular chemistry has been largely overlooked in comparison to the lighter elements of Group 15, and the coordination chemistry of the tripodal ligands [Sb(3-py)3] and [Bi(3-py)3] (L) containing the heaviest p-block element bridgehead atoms has been unexplored. We show that these ligands form a common hybrid metal-organic framework (MOF) structure with Cu(I) and Ag(I) (M) salts of weakly coordinating anions (PF6-, SbF6-, and OTf-), composed of a cationic substructure of rhombic cage (M)4(L)4 units linked by Sb/Bi-M bonding. The greater Lewis acidity of Bi compared to Sb can, however, allows anion···Bi interactions to overcome Bi-metal bonding in the case of BF4-, leading to collapse of the MOF structure (which is also seen where harder metals like Li+ are employed). This study therefore provides insight into the way in which the electronic effects of the bridgehead atom in these ligand systems can impact their supramolecular chemistry.

11.
Angew Chem Int Ed Engl ; 60(47): 24882-24887, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34520612

RESUMEN

Sodium-ion batteries represent a promising alternative to lithium-ion systems. However, the rapid growth of sodium-ion battery technology requires a sustainable and scalable synthetic route to high-grade sodium hexafluorophosphate. This work demonstrates a new multi-gram scale synthesis of NaPF6 in which the reaction of ammonium hexafluorophosphate with sodium metal in THF solvent generates the electrolyte salt with the absence of the impurities that are common in commercial material. The high purity of the electrolyte (absence of insoluble NaF) allows for concentrations up to 3 M to be obtained accurately in binary carbonate battery solvent. Electrochemical characterization shows that the degradation dynamics of sodium metal-electrolyte interface are different for more concentrated (>2 M) electrolytes, suggesting that the higher concentration regime (above the conventional 1 M concentration) may be beneficial to battery performance.

12.
J Am Chem Soc ; 142(2): 1029-1037, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31877039

RESUMEN

Anion binding by receptor molecules is a central field of modern chemistry which impacts areas of catalysis as well as biological and materials chemistry. As binding often requires high chemical stability under aerobic and aqueous conditions for practical applications, carbon-based anion receptors have dominated this field, with main group element analogues receiving far less attention. The recent observation that the air- and moisture-stable amino-cyclophosph(V)azanes of the type [RN(E)P(µ-NR)]2 (E = O, S, Se) can exhibit halide binding that is competitive with topologically related organic receptors (such as squaramides and thioureas) has motivated us here to explore how the binding properties of phosphazane receptors can be enhanced further. Coordination of transition metals by the two P,N metal coordination sites of the phosph(III)azane dimer [(2-py)NHP(µ-NtBu)]2 not only activates the receptor for anion binding (by fixing the optimum exo-exo conformation and polarizing the endocyclic N-H substituents) but also stabilizes the P2N2 ring to hydrolysis and oxidation. We show how the binding properties of these receptors can be modulated by the coordinated metal fragments and that they can bind chloride 1 to 2 orders of magnitude stronger than the related squaramides and thioureas. These features can be utilized in anion transport through phospholipid bilayers under aqueous conditions for which transport can be improved by 1 order of magnitude compared to the previous best phosphazane and thiourea transporters. This study demonstrates how careful design of inorganic systems can result in potent supramolecular functionality, beyond that observed for organic counterparts.

13.
Inorg Chem ; 59(10): 7103-7116, 2020 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-32330014

RESUMEN

A series of new tris(2-pyridyl) bismuthine ligands of the type [Bi(2-py')3] have been prepared, containing a range of substituents at various positions within their pyridyl rings (py'). They can act as intact ligands or, as a result of the low C-Bi bond energy, exhibit noninnocent reactivity in the presence of metal ions. Structural studies of Li+ and Ag+ complexes show that the coordination to metal ions using their pyridyl-N atoms and to anions using the Lewis acidity of their Bi(III) centers can be modified by the presence of substituents within the 2-pyridyl rings, especially at the 6- or 3-positions, which can block the donor-N or Lewis acid Bi sites. Electron withdrawing groups (like CF3 or Br) can also severely reduce their ability to act as ligands to metal ions by reducing the electron donating ability of the pyridyl-N atoms. Noninnocent character is found in the reactions with Cu+ and Cu2+, resulting in the coupling of pyridyl groups to form bipyridines, with the rate of this reaction being dependent on the anion present in the metal salts. This leads to the formation of Bi(III)/Cu(I) complexes containing hypervalent [X2Bi(2-R-py)]- (X = Cl, Br) anions. Alternatively, the tris(2-pyridyl) bismuthine ligands can act as 2-pyridyl transfer reagents, transferring 2-py groups to Au(I) and Fe(II).

14.
Nanotechnology ; 31(35): 355201, 2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-32408277

RESUMEN

TiO2 nanowires with high transparency and good ion storage capacity were explored as the charge-balancing layers for assembling electrochromic devices (ECDs). Increase thickness of TiO2 nanowires layer lowers the driving potential of the entire ECDs accompanied with reduced potential at the EC layer electrode, which further leads to decreased optical contrast and switching speed of the ECDs. Meanwhile, it can be found that the EC layer electrodes possess larger charge densities than those of TiO2 nanowire electrodes during the electrochemical redox process of these ECDs. However, the intrinsic injection and extraction charge densities of each single electrode are similar, which appears that the intrinsic charge balance of EC layer and TiO2 nanowires electrodes play more important role in the cycling stability of the ECDs. ECD with an optimum thickness of the TiO2 nanowires layer exhibits good electrochromic properties in term of high optical contrast (∼45%), fast switching speed (3.23 s) and excellent cycling stability (which has nearly no decay after 5000 cycles). This study explores the effects of thickness of TiO2 Nanowires layer on electrode potentials and electrochromic properties of electrochromic devices (ECDs), providing a potentially new direction for the preparation of ECDs with good integrated performance.

15.
J Am Chem Soc ; 141(22): 8807-8815, 2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-31079456

RESUMEN

The binding and sensing of anions is an important cross-disciplinary field, which impacts broad areas such as biology, supramolecular chemistry and catalysis. To date, however, this area has been dominated by organic architectures which function as H-bonding, anion receptor molecules. Inorganic anion receptors have largely been based on Lewis acidic metals, with very few examples of H-bonding counterparts of organic systems having been systematically studied. This paper develops strategies for enhancing the anion binding properties of phosphazanes of the type [(RNH)(E)P(µ-N tBu)]2 (E = O, S, Se) which are bench-stable, H-bond receptors that can be regarded as inorganic analogues of squaramides (a key class of organic anion receptor). The distinct advantages of these inorganic receptors over organic counterparts is the ease by which their functionality and electronic character can be altered (by means of the R group, chalcogenide, or metal present). Se substitution at the P centers, the presence of electron-withdrawing R groups, and metal coordination to the soft donor centers can be used to modulate and enhance anion binding. The water stability and superior anion binding properties of the seleno-phosph(V)azanes give them applications as synthetic anion transporters through phospholipid layers.


Asunto(s)
Compuestos Organofosforados/química , Enlace de Hidrógeno , Ligandos , Metales/química , Modelos Moleculares , Conformación Molecular , Selenio/química
16.
Chemistry ; 25(61): 14003-14009, 2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31469199

RESUMEN

The systematic assembly of supramolecular arrangements is a persistent challenge in modern coordination chemistry, especially where further aspects of complexity are concerned, as in the case of large molecular mixed-metal arrangements. One targeted approach to such heterometallic complexes is to engineer metal-based donor ligands of the correct geometry to build 3D arrangements upon coordination to other metals. This simple idea has, however, only rarely been applied to main group metal-based ligand systems. Here, we show that the new, bench-stable tris(3-pyridyl)stannane ligand PhSn(3-Py)3 (3-Py=3-pyridyl) provides simple access to a range of heterometallic SnIV /transition metal complexes, and that the presence of weakly coordinating counter anions can be used to build discrete molecular arrangements involving anion encapsulation. This work therefore provides a building strategy in this area, which parallels that of supramolecular transition metal chemistry.


Asunto(s)
Complejos de Coordinación/química , Metales/química , Polímeros/química , Compuestos de Estaño/química , Cristalografía por Rayos X , Ligandos , Conformación Molecular , Estaño/química
17.
Angew Chem Int Ed Engl ; 58(31): 10655-10659, 2019 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-31157489

RESUMEN

Modern supramolecular chemistry is overwhelmingly based on non-covalent interactions involving organic architectures. However, the question of what happens when you depart from this area to the supramolecular chemistry of structures based on non-carbon frameworks remains largely unanswered, and is an area that potentially provides new directions in molecular activation, host-guest chemistry, and biomimetic chemistry. In this work, we explore the unusual host-guest chemistry of the pentameric macrocycle [{P(µ-Nt Bu}2 NH]5 with a range of anionic and neutral guests. The polar coordination site of this host promotes new modes of guest encapsulation via hydrogen bonding with the π systems of the unsaturated C≡C and C≡N bonds of acetylenes and nitriles as well as with the PCO- anion. Halide guests can be kinetically locked within the structure by oxidation of the phosphorus periphery by oxidation to PV . Our study underscores the future promise of p-block macrocyclic chemistry.

18.
Chemistry ; 24(13): 3073-3082, 2018 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-29205953

RESUMEN

Outside the confines and well-established domain of organic chemistry, the systematic building of large macromolecular arrangements based on non-carbon elements represents a significant and exciting challenge. Our aim in the past two decades has been to develop robust synthetic methods to construct new types of main group architectures in a methodical way, principles of design that parallel those used in the organic arena. This Concept article addresses the fundamental thermodynamic and kinetic problems involved in the design and synthesis of main group macrocycles and looks to future developments of macromolecules in this area, as well as new applications in coordination chemistry.

19.
Chemistry ; 24(8): 2013-2019, 2018 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-29214680

RESUMEN

Oxidation of the PIII dianion [S-P(µ-NtBu)]22- (1) with elemental sulphur, selenium and tellurium gives the PV dianions [(S)(E)P(µ-NtBu)]22- (E = S (6 a), Se (6 b), Te (6 c)). Although 6 c proves to be too unstable, the S,S-dianion 6 a and ambidentate S,Se-dianion 6 b are readily transferred intact to main group and transition metal elements, producing a range of new cage and coordination compounds. While their coordination characteristics are in many ways similar to closely-related isoelectronic phosph(V)azane anions [(E)(RN=)P(µ-NtBu)]22- , the sterically unhindered nature of 6 introduces an expanded range of coordination modes, that is, facial S,S- and Se,Se-bonding as well as side-on S,Se-coordination. All of these bonding modes are observed for the amibidentate S,Se dianion 6 b.

20.
Chemistry ; 24(64): 17019-17026, 2018 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-30092123

RESUMEN

Postfunctionalization of the aluminate anion [EtAl(6-Me-2-py)3 ]- (1) (2-py=2-pyridyl) with alkoxide ligands can be achieved by the selective reactions of the lithium salt 1 Li with alcohols in the appropriate stoichiometry. This method can be used to introduce 3- and 4-py functionality in the form of 3- and 4-alkoxymethylpyridyl groups, while maintaining the integrity of the aluminate framework, thereby giving entry to new supramolecular chemistry. Chirality can be introduced either by using a chiral alcohol as a reactant or by the stepwise reaction of 1 Li with two different nonchiral alcohols. The latter route has allowed the synthesis of a rare example of a chiral-at-aluminium aluminate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA