Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Biol Sci ; 284(1847)2017 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-28100819

RESUMEN

A small number of free-living viruses have been found to be obligately vertically transmitted, but it remains uncertain how widespread vertically transmitted viruses are and how quickly they can spread through host populations. Recent metagenomic studies have found several insects to be infected with sigma viruses (Rhabdoviridae). Here, we report that sigma viruses that infect Mediterranean fruit flies (Ceratitis capitata), Drosophila immigrans, and speckled wood butterflies (Pararge aegeria) are all vertically transmitted. We find patterns of vertical transmission that are consistent with those seen in Drosophila sigma viruses, with high rates of maternal transmission, and lower rates of paternal transmission. This mode of transmission allows them to spread rapidly in populations, and using viral sequence data we found the viruses in D. immigrans and C. capitata had both recently swept through host populations. The viruses were common in nature, with mean prevalences of 12% in C. capitata, 38% in D. immigrans and 74% in P. aegeria We conclude that vertically transmitted rhabdoviruses may be widespread in a broad range of insect taxa, and that these viruses can have dynamic interactions with their hosts.


Asunto(s)
Transmisión Vertical de Enfermedad Infecciosa , Insectos/virología , Rhabdoviridae , Animales , Mariposas Diurnas/virología , Ceratitis capitata/virología , Drosophila/virología
2.
Proc Biol Sci ; 279(1736): 2122-7, 2012 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-22279164

RESUMEN

For organisms with temperature-dependent sex determination (TSD), skewed offspring sex ratios are common. However, climate warming poses the unique threat of producing extreme sex ratio biases that could ultimately lead to population extinctions. In marine turtles, highly female-skewed hatchling sex ratios already occur and predicted increases in global temperatures are expected to exacerbate this trend, unless species can adapt. However, it is not known whether offspring sex ratios persist into adulthood, or whether variation in male mating success intensifies the impact of a shortage of males on effective population size. Here, we use parentage analysis to show that in a rookery of the endangered green turtle (Chelonia mydas), despite an offspring sex ratio of 95 per cent females, there were at least 1.4 reproductive males to every breeding female. Our results suggest that male reproductive intervals may be shorter than the 2-4 years typical for females, and/or that males move between aggregations of receptive females, an inference supported by our satellite tracking, which shows that male turtles may visit multiple rookeries. We suggest that male mating patterns have the potential to buffer the disruptive effects of climate change on marine turtle populations, many of which are already seriously threatened.


Asunto(s)
Cambio Climático , Conducta Sexual Animal/fisiología , Tortugas/fisiología , Animales , Chipre , Especies en Peligro de Extinción , Femenino , Masculino , Repeticiones de Microsatélite , Procesos de Determinación del Sexo , Razón de Masculinidad , Nave Espacial
3.
Mol Ecol ; 21(14): 3625-35, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22591073

RESUMEN

For species of conservation concern, knowledge of key life-history and demographic components, such as the number and sex ratio of breeding adults, is essential for accurate assessments of population viability. Species with temperature-dependent sex determination can produce heavily biased primary sex ratios, and there is concern that adult sex ratios may be similarly skewed or will become so as a result of climate warming. Prediction and mitigation of such impacts are difficult when life-history information is lacking. In marine turtles, owing to the difficultly in observing males at sea, the breeding interval of males is unknown. It has been suggested that male breeding periodicity may be shorter than that of females, which could help to compensate for generally female-biased sex ratios. Here we outline how the use of molecular-based paternity analysis has allowed us, for the first time, to assess the breeding interval of male marine turtles across multiple breeding seasons. In our study rookery of green turtles (Chelonia mydas), 97% of males were assigned offspring in only one breeding season within the 3-year study period, strongly suggesting that male breeding intervals are frequently longer than 1year at this site. Our results also reveal a sex ratio of breeding adults of at least 1.3 males to each female. This study illustrates the utility of molecular-based parentage inference using reconstruction of parental genotypes as a method for monitoring the number and sex ratio of breeders in species where direct observations or capture are difficult.


Asunto(s)
Cruzamiento , Conducta Sexual Animal , Tortugas/genética , Animales , Chipre , Femenino , Genotipo , Masculino , Repeticiones de Microsatélite , Periodicidad , Estaciones del Año , Análisis de Secuencia de ADN , Razón de Masculinidad , Tortugas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA