Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 20(5): e1011284, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38743783

RESUMEN

The Integrator is a multi-subunit protein complex that catalyzes the maturation of snRNA transcripts via 3' cleavage, a step required for snRNA incorporation with snRNP for spliceosome biogenesis. Here we developed a GFP based in vivo snRNA misprocessing reporter as a readout of Integrator function and performed a genome-wide RNAi screen for Integrator regulators. We found that loss of the Argonaute encoding csr-1 gene resulted in widespread 3' misprocessing of snRNA transcripts that is accompanied by a significant increase in alternative splicing. Loss of the csr-1 gene down-regulates the germline expression of Integrator subunits 4 and 6 and is accompanied by a reduced protein translation efficiency of multiple Integrator catalytic and non-catalytic subunits. Through isoform and motif mutant analysis, we determined that CSR-1's effect on snRNA processing is dependent on its catalytic slicer activity but does not involve the CSR-1a isoform. Moreover, mRNA-sequencing revealed high similarity in the transcriptome profile between csr-1 and Integrator subunit knockdown via RNAi. Together, our findings reveal CSR-1 as a new regulator of the Integrator complex and implicate a novel role of this Argonaute protein in snRNA 3' processing.


Asunto(s)
Proteínas Argonautas , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , ARN Nuclear Pequeño , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Animales , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Empalme Alternativo/genética , Interferencia de ARN , Procesamiento Postranscripcional del ARN , Empalmosomas/metabolismo , Empalmosomas/genética
2.
Proc Natl Acad Sci U S A ; 121(22): e2317230121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38768344

RESUMEN

Efforts to develop an HIV-1 vaccine include those focusing on conserved structural elements as the target of broadly neutralizing monoclonal antibodies. MAb D5 binds to a highly conserved hydrophobic pocket on the gp41 N-heptad repeat (NHR) coiled coil and neutralizes through prevention of viral fusion and entry. Assessment of 17-mer and 36-mer NHR peptides presenting the D5 epitope in rodent immunogenicity studies showed that the longer peptide elicited higher titers of neutralizing antibodies, suggesting that neutralizing epitopes outside of the D5 pocket may exist. Although the magnitude and breadth of neutralization elicited by NHR-targeting antigens are lower than that observed for antibodies directed to other epitopes on the envelope glycoprotein complex, it has been shown that NHR-directed antibodies are potentiated in TZM-bl cells containing the FcγRI receptor. Herein, we report the design and evaluation of covalently stabilized trimeric 51-mer peptides encompassing the complete gp41 NHR. We demonstrate that these peptide trimers function as effective antiviral entry inhibitors and retain the ability to present the D5 epitope. We further demonstrate in rodent and nonhuman primate immunization studies that our 51-mer constructs elicit a broader repertoire of neutralizing antibody and improved cross-clade neutralization of primary HIV-1 isolates relative to 17-mer and 36-mer NHR peptides in A3R5 and FcγR1-enhanced TZM-bl assays. These results demonstrate that sensitive neutralization assays can be used for structural enhancement of moderately potent neutralizing epitopes. Finally, we present expanded trimeric peptide designs which include unique low-molecular-weight scaffolds that provide versatility in our immunogen presentation strategy.


Asunto(s)
Vacunas contra el SIDA , Anticuerpos Neutralizantes , Anticuerpos Anti-VIH , Proteína gp41 de Envoltorio del VIH , VIH-1 , Proteína gp41 de Envoltorio del VIH/inmunología , Proteína gp41 de Envoltorio del VIH/química , VIH-1/inmunología , Animales , Vacunas contra el SIDA/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Humanos , Ratones , Epítopos/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/prevención & control , Infecciones por VIH/virología , Péptidos/inmunología , Péptidos/química , Femenino , Anticuerpos Monoclonales/inmunología
3.
Nucleic Acids Res ; 52(D1): D376-D383, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37870448

RESUMEN

Allosteric regulation, induced by perturbations at an allosteric site topographically distinct from the orthosteric site, is one of the most direct and efficient ways to fine-tune macromolecular function. The Allosteric Database (ASD; accessible online at http://mdl.shsmu.edu.cn/ASD) has been systematically developed since 2009 to provide comprehensive information on allosteric regulation. In recent years, allostery has seen sustained growth and wide-ranging applications in life sciences, from basic research to new therapeutics development, while also elucidating emerging obstacles across allosteric research stages. To overcome these challenges and maintain high-quality data center services, novel features were curated in the ASD2023 update: (i) 66 589 potential allosteric sites, covering > 80% of the human proteome and constituting the human allosteric pocketome; (ii) 748 allosteric protein-protein interaction (PPI) modulators with clear mechanisms, aiding protein machine studies and PPI-targeted drug discovery; (iii) 'Allosteric Hit-to-Lead,' a pioneering dataset providing panoramic views from 87 well-defined allosteric hits to 6565 leads and (iv) 456 dualsteric modulators for exploring the simultaneous regulation of allosteric and orthosteric sites. Meanwhile, ASD2023 maintains a significant growth of foundational allosteric data. Based on these efforts, the allosteric knowledgebase is progressively evolving towards an integrated landscape, facilitating advancements in allosteric target identification, mechanistic exploration and drug discovery.


Asunto(s)
Sitio Alostérico , Bases del Conocimiento , Humanos , Regulación Alostérica , Descubrimiento de Drogas , Ligandos , Proteoma , Mapas de Interacción de Proteínas
4.
Cell Commun Signal ; 22(1): 60, 2024 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-38254118

RESUMEN

BACKGROUND: Increasing evidence has indicated that long non-coding RNAs (lncRNAs) have been proven to regulate esophageal cancer progression. The lncRNA protein disulfide isomerase family A member 3 pseudogene 1 (PDIA3P1) has been shown to promote cancer stem cell properties; however, its mechanism of action remains unclear. In this study, we investigated the regulation of esophageal cancer stem cell properties by the interaction of PDIA3P1 with proteins. METHODS: The GEPIA2 and Gene Expression Omnibus databases were used to analyze gene expression. PDIA3P1 expression in human esophageal squamous cell carcinoma (ESCC) tissues and cell lines was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Loss-of-function experiments were performed to determine the effects of PDIA3P1 on ESCC cell proliferation, migration, and invasion. The sphere formation assay, number of side population cells, and CD271 + /CD44 + cells were detected by flow cytometry to identify the cancer stem cell properties. RNA immunoprecipitation (RIP), RNA pull-down, co-immunoprecipitation (co-IP), dual luciferase reporter, and cleavage under targets and tagmentation (CUT&Tag) assays were performed to elucidate the underlying molecular mechanisms. RESULTS: PDIA3P1 expression was upregulated in ESCC cell lines and tissues. Functionally, higher PDIA3P1 expression promoted cell proliferation, invasion, and metastasis and inhibited apoptosis in esophageal cancer. Importantly, PDIA3P1 promoted cancer stem cell properties in ESCC. Mechanistically, PDIA3P1 interacted with and stabilized octamer-binding transcription factor 4 (OCT4) by eliminating its ubiquitination by the ubiquitinating enzyme WW domain-containing protein 2 (WWP2). Moreover, as a transcription factor, OCT4 bound to the PDIA3P1 promoter and promoted its transcription. CONCLUSIONS: Our research revealed a novel mechanism by which a positive feedback loop exists between PDIA3P1 and OCT4. It also demonstrated that the PDIA3P1-WWP2-OCT4 loop is beneficial for promoting the cancer stem cell properties of ESCC. Owing to this regulatory relationship, the PDIA3P1-WWP2-OCT4-positive feedback loop might be used in the diagnosis and prognosis, as well as in the development of novel therapeutics for esophageal cancer.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Células Madre Neoplásicas , Factor 3 de Transcripción de Unión a Octámeros , ARN Largo no Codificante , Humanos , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas de Esófago/genética , ARN , Ubiquitina-Proteína Ligasas , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Neoplásicas/metabolismo , Receptores de Factor de Crecimiento Nervioso
5.
Ultrason Imaging ; 46(2): 121-129, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38197383

RESUMEN

To establish a predictive model incorporating conventional ultrasound, strain elastography and clinicopathological features for Ki-67 expression in small breast cancer (SBC) which defined as maximum diameter less than2 cm. In this retrospective study, 165 SBC patients from our hospital were allocated to a high Ki-67 group (n = 104) and a low Ki-67 group (n = 61). Multivariate regression analysis was performed to identify independent indicators for developing predictive models. The area under the receiver operating characteristic (AUC) curve was also determined to establish the diagnostic performance of different predictive models. The corresponding sensitivities and specificities of different models at the cutoff value were compared. Conventional ultrasound parameters (spiculated margin, absence of posterior shadowing and Adler grade 2-3), strain elastic scores and clinicopathological information (HER2 positive) were significantly correlated with high expression of Ki-67 in SBC (all p < .05). Model 2, which incorporated conventional ultrasound features and strain elastic scores, yielded good diagnostic performance (AUC = 0.774) with better sensitivity than model 1, which only incorporated ultrasound characteristics (78.85%vs. 55.77%, p = .000), with specificities of 77.05% and 62.30% (p = .035), respectively. Model 3, which incorporated conventional ultrasound, strain elastography and clinicopathological features, yielded better performance (AUC = 0.853) than model 1 (AUC = 0.694) and model 2 (AUC = 0.774), and the specificity was higher than model 1 (86.89% vs. 77.05%, p = .001). The predictive model combining conventional ultrasound, strain elastic scores and clinicopathological features could improve the predictive performance of Ki-67 expression in SBC.


Asunto(s)
Neoplasias de la Mama , Diagnóstico por Imagen de Elasticidad , Femenino , Humanos , Neoplasias de la Mama/diagnóstico por imagen , Antígeno Ki-67 , Ultrasonografía Mamaria , Estudios Retrospectivos
6.
Chem Soc Rev ; 52(24): 8651-8677, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37990599

RESUMEN

Traditionally, drugs are monovalent, targeting only one site on the protein surface. This includes orthosteric and allosteric drugs, which bind the protein at orthosteric and allosteric sites, respectively. Orthosteric drugs are good in potency, whereas allosteric drugs have better selectivity and are solutions to classically undruggable targets. However, it would be difficult to simultaneously reach high potency and selectivity when targeting only one site. Also, both kinds of monovalent drugs suffer from mutation-caused drug resistance. To overcome these obstacles, dualsteric modulators have been proposed in the past twenty years. Compared to orthosteric or allosteric drugs, dualsteric modulators are bivalent (or bitopic) with two pharmacophores. Each of the two pharmacophores bind the protein at the orthosteric and an allosteric site, which could bring the modulator with special properties beyond monovalent drugs. In this study, we comprehensively review the current development of dualsteric modulators. Our main effort reason and illustrate the aims to apply the dualsteric approach, including a "double win" of potency and selectivity, overcoming mutation-caused drug resistance, developments of function-biased modulators, and design of partial agonists. Moreover, the strengths of the dualsteric technique also led to its application outside pharmacy, including the design of highly sensitive fluorescent tracers and usage as molecular rulers. Besides, we also introduced drug targets, designing strategies, and validation methods of dualsteric modulators. Finally, we detail the conclusions and perspectives.


Asunto(s)
Ligandos , Sitio Alostérico , Mutación , Regulación Alostérica
7.
Biophys J ; 122(12): 2489-2499, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37147802

RESUMEN

The cell elastic modulus (Ec) is widely used as the mechanics-based marker to analyze the biological effects of substrates on cells. However, the employment of the Hertz model to extract the apparent Ec can cause errors due to the disobedience of the small deformation assumption and the infinite half-space assumption, as well as an inability to deduct the deformation of the substrate. So far, no model can effectively solve the errors caused by the above-mentioned aspects simultaneously. In response to this, herein, we propose an active learning model to extract Ec. The numerical calculation with finite element suggests the good prediction accuracy of the model. The indentation experiments on both hydrogel and cell indicate that the established model can efficiently reduce the error caused by the method of extracting Ec. The application of this model may facilitate our understanding about the role of Ec in correlating the stiffness of substrate and the biological behavior of cell.


Asunto(s)
Modelos Biológicos , Aprendizaje Basado en Problemas , Módulo de Elasticidad/fisiología , Análisis de Elementos Finitos
8.
J Cell Mol Med ; 27(12): 1609-1620, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37070530

RESUMEN

Proteins produced by cap-independent translation mediated by an internal ribosome entry site (IRES) in circular RNAs (circRNAs) play important roles in tumour progression. To date, numerous studies have been performed on circRNAs and the proteins they encode. In this review, we summarize the biogenesis of circRNAs and the mechanisms regulating circRNA-encoded proteins expression. We also describe relevant research methods and their applications to biological processes such as tumour cell proliferation, metastasis, epithelial-mesenchymal transition (EMT), apoptosis, autophagy and chemoresistance. This paper offers deeper insights into the roles that circRNA-encoded proteins play in tumours. It also provides a theoretical basis for the use of circRNA-encoded proteins as biomarkers of tumorigenesis and for the development of new targets for tumour therapy.


Asunto(s)
ARN Circular , ARN , Humanos , ARN Circular/genética , ARN/metabolismo , Transformación Celular Neoplásica/genética , Proteínas , Transición Epitelial-Mesenquimal/genética
9.
Phys Chem Chem Phys ; 26(1): 421-429, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38078535

RESUMEN

Lattice thermal conductivity (κL) plays a crucial role in the thermal management of electronic devices. In this study, we systematically investigate the thermal transport properties of monolayer fluorinated graphene using a combination of machine learning-based interatomic potentials and the phonon Boltzmann transport equation. At a temperature of 300 K, we find that the κL values for chair-configured fluorinated graphene monolayers are 184.24 W m-1 K-1 in the zigzag direction and 205.57 W m-1 K-1 in the armchair direction. For the boat configuration, the κL values are 120.45 W m-1 K-1 and 64.26 W m-1 K-1 in the respective directions. The disparities in κL between these two configurations predominantly stem from differences in phonon relaxation times, which can be elucidated by examining the Grüneisen parameters representing the degree of anharmonicity. A more in-depth analysis of bond strengths, as assessed by the crystal orbital Hamiltonian population, reveals that the stronger in-plane CC bonds in chair-configured fluorinated graphene monolayers are the primary contributors to the observed variations in anharmonicity.

10.
Nucleic Acids Res ; 49(D1): D1218-D1224, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-32941628

RESUMEN

Infertility is a complex multifactorial disease that affects up to 10% of couples across the world. However, many mechanisms of infertility remain unclear due to the lack of studies based on systematic knowledge, leading to ineffective treatment and/or transmission of genetic defects to offspring. Here, we developed an infertility disease database to provide a comprehensive resource featuring various factors involved in infertility. Features in the current IDDB version were manually curated as follows: (i) a total of 307 infertility-associated genes in human and 1348 genes associated with reproductive disorder in 9 model organisms; (ii) a total of 202 chromosomal abnormalities leading to human infertility, including aneuploidies and structural variants; and (iii) a total of 2078 pathogenic variants from infertility patients' samples across 60 different diseases causing infertility. Additionally, the characteristics of clinically diagnosed infertility patients (i.e. causative variants, laboratory indexes and clinical manifestations) were collected. To the best of our knowledge, the IDDB is the first infertility database serving as a systematic resource for biologists to decipher infertility mechanisms and for clinicians to achieve better diagnosis/treatment of patients from disease phenotype to genetic factors. The IDDB is freely available at http://mdl.shsmu.edu.cn/IDDB/.


Asunto(s)
Aberraciones Cromosómicas , Bases de Datos Factuales , Enfermedades del Sistema Endocrino/genética , Infertilidad Femenina/genética , Infertilidad Masculina/genética , Mutación , Animales , Mapeo Cromosómico , Modelos Animales de Enfermedad , Enfermedades del Sistema Endocrino/metabolismo , Enfermedades del Sistema Endocrino/patología , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Genoma Humano , Humanos , Infertilidad Femenina/metabolismo , Infertilidad Femenina/patología , Infertilidad Masculina/metabolismo , Infertilidad Masculina/patología , Internet , Masculino , Oocitos/metabolismo , Oocitos/patología , Programas Informáticos , Espermatozoides/metabolismo , Espermatozoides/patología
11.
Radiol Med ; 128(4): 393-401, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36943653

RESUMEN

PURPOSE: To evaluate and compare the diagnostic performance of revised contrast-enhanced ultrasound (CEUS) Liver Imaging Reporting and Data System version by combining LR-M category and serum alpha-fetoprotein (AFP) under different cut-off values. MATERIAL AND METHODS: This retrospective study enrolled 152 high-risk patients with 152 histology-proven nodules. For revised LI-RADS, nodules in LR-M with different elevated AFP thresholds have been reclassified as the LR-5 category. The diagnostic performances of original and revised CEUS LI-RADS were evaluated and compared. RESULTS: To compare with the original version, the sensitivity of revised LR-5 (adjusted with AFP value > 200 ng/ml or 400 ng/ml) for the diagnosis of hepatocellular carcinoma (HCC) improved from 52.5 to 69.2% or 65.0%, respectively (both p < 0.001) without compromising specificity (87.5% vs. 71.9% or 78.1%, respectively, both p > 0.05). For the diagnosis of non-HCC malignancy, the specificity of the LR-M after reclassification was improved (69.6% vs. 84.4% or 80.7%, respectively, both p < 0.001) with a non-significant sensitivity reduction (100.0 vs. 70.6% or 82.4%, respectively, both p > 0.05). After modification, the sensitivity of LR-5 also increased to 69.1% or 64.9% (both p < 0.001), while the specificity and PPV did not change (both p > 0.05) for larger nodules (> 20 mm). CONCLUSION: The diagnostic performance of CEUS LI-RADS can be further improved by reclassifying LR-M nodules with elevated AFP thresholds to LR-5.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hígado , Ultrasonografía , alfa-Fetoproteínas , Humanos , alfa-Fetoproteínas/análisis , Carcinoma Hepatocelular/sangre , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/patología , Medios de Contraste , Pueblos del Este de Asia , Neoplasias Hepáticas/sangre , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/patología , Reproducibilidad de los Resultados , Estudios Retrospectivos , Sensibilidad y Especificidad , Hígado/diagnóstico por imagen , Ultrasonografía/métodos , Medición de Riesgo
12.
Nanotechnology ; 33(21)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35130521

RESUMEN

Based on the method of non-equilibrium Green's function, we investigate the thermal transport and thermoelectric properties of graphenylene nanoribbons (GRNRs) with different width and chirality. The results show that the thermoelectric (TE) performance of GRNRs significantly increases with decreasing ribbon width, which stems from the reduction of thermal conductance. In addition, by changing the ribbon width and chirality, the figure of merit (ZT) can be controllably manipulated and maximized up to 0.45 at room temperature. Moreover, it is found that theZTvalue of GRNRs with branched structure can reach 1.8 at 300 K and 3.4 at 800 K owing to the phonon local resonance. Our findings here are of great importance for thermoelectric applications of GRNRs.

13.
Nucleic Acids Res ; 48(D1): D807-D816, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31691819

RESUMEN

Genome-wide association studies (GWASs) have revolutionized the field of complex trait genetics over the past decade, yet for most of the significant genotype-phenotype associations the true causal variants remain unknown. Identifying and interpreting how causal genetic variants confer disease susceptibility is still a big challenge. Herein we introduce a new database, CAUSALdb, to integrate the most comprehensive GWAS summary statistics to date and identify credible sets of potential causal variants using uniformly processed fine-mapping. The database has six major features: it (i) curates 3052 high-quality, fine-mappable GWAS summary statistics across five human super-populations and 2629 unique traits; (ii) estimates causal probabilities of all genetic variants in GWAS significant loci using three state-of-the-art fine-mapping tools; (iii) maps the reported traits to a powerful ontology MeSH, making it simple for users to browse studies on the trait tree; (iv) incorporates highly interactive Manhattan and LocusZoom-like plots to allow visualization of credible sets in a single web page more efficiently; (v) enables online comparison of causal relations on variant-, gene- and trait-levels among studies with different sample sizes or populations and (vi) offers comprehensive variant annotations by integrating massive base-wise and allele-specific functional annotations. CAUSALdb is freely available at http://mulinlab.org/causaldb.


Asunto(s)
Mapeo Cromosómico , Bases de Datos Genéticas , Enfermedad/genética , Genoma Humano , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Desequilibrio de Ligamiento , Sitios de Carácter Cuantitativo
14.
Int J Hyperthermia ; 38(1): 13-21, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33491511

RESUMEN

Aim: Magnetic hydrogels (MHGs) have been proposed to avoid the redistribution and loss of magnetic nanoparticles (MNPs) when administrated by intratumoral injection. However, the requirement of complex cooling systems and temperature monitoring systems still hinder the clinical application of MHGs. This study investigates the feasibility of developing an MHG to realize the self-regulation of hyperthermia temperature. Methods: The MHG was developed by dispersing the MNPs with self-regulating temperature property into the temperature-sensitive hydrogel through physical crosslinking. The MHG's gelation temperature was tested by measuring the storage modulus and loss modulus on a rotational rheometer. The biocompatibility of the MHG and MNPs was characterized by CCK-8 assay against HaCaT cells. The in vivo magnetic heating property was examined through monitoring the temperature in the MHG on mice back upon the application of the alternating magnetic field (400 ± 5 Oe, 100 ± 5 kHz) every week for successive six weeks. Results: The gelation temperature of the MHG falls in 28.4°C-37.4°C. At in vivo applied concentration of 80 mg/mL, the MHG exhibits over 80% cell viability after 72 h, significantly higher than 50% cell viability of the MNPs (p<0.001). The MHG's stable magnetic hyperthermia temperatures in vivo are in the range of 43.4°C-43.8°C. Conclusions: The developed MHG can be injected using a syringe and will solidify upon body temperature. The biocompatibility is improved after the MNPs being made into MHG. The MHG can self-regulate the temperature for six weeks, exhibiting application potential for self-regulating temperature hyperthermia.


Asunto(s)
Hipertermia Inducida , Nanopartículas de Magnetita , Animales , Hidrogeles , Hipertermia , Campos Magnéticos , Ratones , Temperatura
15.
BMC Biol ; 17(1): 56, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31311534

RESUMEN

BACKGROUND: Adaptive responses to stress are essential for cell and organismal survival. In metazoans, little is known about the impact of environmental stress on RNA homeostasis. RESULTS: By studying the regulation of a cadmium-induced gene named numr-1 in Caenorhabditis elegans, we discovered that disruption of RNA processing acts as a signal for environmental stress. We find that NUMR-1 contains motifs common to RNA splicing factors and influences RNA splicing in vivo. A genome-wide screen reveals that numr-1 is strongly and specifically induced by silencing of genes that function in basal RNA metabolism including subunits of the metazoan integrator complex. Human integrator processes snRNAs for functioning with splicing factors, and we find that silencing of C. elegans integrator subunits disrupts snRNA processing, causes aberrant pre-mRNA splicing, and induces the heat shock response. Cadmium, which also strongly induces numr-1, has similar effects on RNA and the heat shock response. Lastly, we find that heat shock factor-1 is required for full numr-1 induction by cadmium. CONCLUSION: Our results are consistent with a model in which disruption of integrator processing of RNA acts as a molecular damage signal initiating an adaptive stress response mediated by heat shock factor-1. When numr-1 is induced via this pathway in C. elegans, its function in RNA metabolism may allow it to mitigate further damage and thereby promote tolerance to cadmium.


Asunto(s)
Cadmio/toxicidad , Caenorhabditis elegans/fisiología , Regulación de la Expresión Génica , Respuesta al Choque Térmico/fisiología , Procesamiento Postranscripcional del ARN/fisiología , Empalme del ARN , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Respuesta al Choque Térmico/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , Estrés Fisiológico
16.
Biochem Cell Biol ; 97(5): 536-544, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30763120

RESUMEN

Thirteen-lined ground squirrels (Ictidomys tridecemlineatus) are excellent models for studying acute brain ischemia because they show high resistance to reductions in blood flow and oxygen delivery without evidence of neurological damage. In this study, we analyzed the insulin signaling pathway and regulation of mitochondrial substrate oxidation in three regions of ground squirrel brain (forebrain, cerebellum, and brainstem), comparing summer, late torpor, and interbout arousal conditions. We found select decreases in phospho-Akt in the cerebellum during torpor compared with summer animals, as well as select increases in the forebrain during interbout arousal, suggesting that Akt may influence either metabolism or cytoprotective pathways. The phosphoprotein abundance of glycogen synthase kinase 3 beta (GSK3ß) showed the most consistent trend across all three brain regions, with peak increases observed during deep torpor, suggesting a crucial role for this protein during hibernation. Furthermore, all three regions of the brain showed increased phospho-protein abundance of pyruvate dehydrogenase at serine 232 during both deep torpor and interbout arousal, and serine 300 during interbout arousal only, whereas other phosphorylation sites showed a region-specific expression pattern. Information collected from these studies sheds light on the molecular controls governing insulin signaling and fuel utilization in the brain of hibernating ground squirrels.


Asunto(s)
Apoptosis , Encéfalo/metabolismo , Glucosa/metabolismo , Glucógeno Sintasa Quinasa 3 beta/síntesis química , Fosfoproteínas/síntesis química , Sciuridae/metabolismo , Animales , Glucógeno Sintasa Quinasa 3 beta/química , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Insulina/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo
17.
PLoS Genet ; 12(10): e1006361, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27776126

RESUMEN

SKN-1/Nrf are the primary antioxidant/detoxification response transcription factors in animals and they promote health and longevity in many contexts. SKN-1/Nrf are activated by a remarkably broad-range of natural and synthetic compounds and physiological conditions. Defining the signaling mechanisms that regulate SKN-1/Nrf activation provides insights into how cells coordinate responses to stress. Nrf2 in mammals is regulated in part by the redox sensor repressor protein named Keap1. In C. elegans, the p38 MAPK cascade in the intestine activates SKN-1 during oxidative stress by promoting its nuclear accumulation. Interestingly, we find variation in the kinetics of p38 MAPK activation and tissues with SKN-1 nuclear accumulation among different pro-oxidants that all trigger strong induction of SKN-1 target genes. Using genome-wide RNAi screening, we identify new genes that are required for activation of the core SKN-1 target gene gst-4 during exposure to the natural pro-oxidant juglone. Among 10 putative activators identified in this screen was skr-1/2, highly conserved homologs of yeast and mammalian Skp1, which function to assemble protein complexes. Silencing of skr-1/2 inhibits induction of SKN-1 dependent detoxification genes and reduces resistance to pro-oxidants without decreasing p38 MAPK activation. Global transcriptomics revealed strong correlation between genes that are regulated by SKR-1/2 and SKN-1 indicating a high degree of specificity. We also show that SKR-1/2 functions upstream of the WD40 repeat protein WDR-23, which binds to and inhibits SKN-1. Together, these results identify a novel p38 MAPK independent signaling mechanism that activates SKN-1 via SKR-1/2 and involves WDR-23.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Inactivación Metabólica/genética , Longevidad/genética , Proteínas Ligasas SKP Cullina F-box/genética , Receptores de Activinas Tipo I/genética , Animales , Antioxidantes/metabolismo , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/biosíntesis , Tracto Gastrointestinal/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/biosíntesis , Proteína 1 Asociada A ECH Tipo Kelch/genética , Fosforilación , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Ligasas SKP Cullina F-box/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
18.
Artículo en Inglés | MEDLINE | ID: mdl-30343059

RESUMEN

Hibernating mammals use strong metabolic rate depression and a reduction in body temperature to near-ambient to survive the cold winter months. During torpor, protein synthesis is suppressed but can resume during interbout arousals. The current study aimed to identify molecular targets responsible for the global suppression of protein synthesis during torpor as well as possible mechanisms that could allow for selective protein translation to continue over this time. Relative changes in protein expression and/or phosphorylation levels of key translation factors (ribosomal protein S6, eIF4E, eIF2α, eEF2) and their upstream regulators (mTOR, TSC2, p70 S6K, 4EBP) were analyzed in liver and kidney of 13-lined ground squirrels (Ictidomys tridecemlineatus) sampled from six points over the torpor-arousal cycle. The results indicate that both organs reduce protein synthesis during torpor by decreasing mTOR and TSC2 phosphorylation between 30 and 70% of control levels. Translation resumes during interbout arousal when p-p70 S6K, p-rpS6, and p-4EBP levels returned to control values or above. Only liver translation factors were activated or disinhibited during periods of torpor itself, with >3-fold increases in total eIF2α and eEF2 protein levels, and a decrease in p-eEF2 (T56) to as low as 16% of the euthermic control value. These data shed light on a possible molecular mechanism involving eIF2α that could enable the translation of key transcripts during times of cell stress.


Asunto(s)
Factor 2 Eucariótico de Iniciación/metabolismo , Sciuridae/fisiología , Letargo , Animales , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Sciuridae/metabolismo
19.
Mol Cell Biochem ; 439(1-2): 151-161, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28780752

RESUMEN

Mammalian hibernation is a state of dormancy that is used by some animals to survive through the unfavorable conditions of winter, and is characterized by coordinated suppression of basal metabolism that is supported by global inhibition of energy/ATP-consuming processes. In this study, we examine the regulation of the anti-proliferatory TGF-ß/Smad transcription factor signaling pathway in the liver tissue of the hibernating 13-lined ground squirrel Ictidomys tridecemlineatus. The TGF-ß/Smad signaling pathway is known to mediate cell cycle arrest through induction of cell cycle dependent kinase inhibitors, and more recently, has been shown to regulate a wide range of cellular processes via its control of microRNA biosynthesis. We show that phosphorylation levels of the Smad3 protein at its activation residue is increased by ~1.5-fold during torpor, and this is associated with an increase in nuclear localization and DNA binding activity of Smad3. Expression levels of several TGF-ß induced microRNAs previously described in human cells were also activated in ground squirrel during torpor. Among these were miR-21, miR-23a, and miR-107, which contain either the conserved R-SBE or R-SBE related motif found in microRNAs that are post-transcriptionally processed by Smad proteins. We show that levels of miR-21 were highly elevated at multiple stages of torpor, and predicted gene targets of miR-21 were enriched to multiple pro-growth cellular processes. Overall, we provide evidence that show the Smad3 transcription factor is activated in ground squirrels during torpor, and suggest a role for this signaling pathway in mediating anti-proliferatory signals via its transcriptional control of cell cycle inhibitors and downstream microRNAs.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Hibernación/fisiología , MicroARNs/biosíntesis , Sciuridae/metabolismo , Proteína smad3/metabolismo , Animales
20.
Anal Bioanal Chem ; 410(26): 6819-6826, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30066196

RESUMEN

In this study, a biosensing system based on nicking-enhanced rolling circle amplification (N-RCA) was proposed for the highly sensitive detection of cancer-related let-7a microRNA (miRNA). The sensing system consists of a padlock probe (PP), which contains a target recognition sequence and two binding sites for nicking endonuclease (NEase), and molecular beacon (MB) as reporting molecule. Upon hybridization with let-7a, the PP can be circularized by ligase. Then, the miRNA acted as polymerization primer to initiate rolling circle amplification (RCA). With the assistance of NEase, RCA products can be nicked on the cyclized PP and are displaced during the subsequent duplication process, generating numerous nicked fragments (NFs). These NFs not only induce another RCA reaction but also open the molecular beacons (MBs) via hybridization, leading to significantly amplified fluorescence signal. Under the optimized conditions, this method exhibits high sensitivity toward target miRNA let-7a with a detection limit of as low as 10 pM, a dynamic range of three orders of magnitude is achieved, and its family member is easily distinguished even with only one mismatched base. Meanwhile, it displays good recovery and satisfactory reproducibility in fetal bovine serum (FBS). Therefore, these merits endow the newly proposed N-RCA strategy with powerful implications for miRNA detection. Graphical abstract A biosensing system based on nicking-enhanced rolling circle amplification (N-RCA) for the highly sensitive detection of cancer-related let-7a microRNA.


Asunto(s)
MicroARNs/metabolismo , Neoplasias/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Espectrometría de Fluorescencia/métodos , Línea Celular Tumoral , Humanos , Límite de Detección , Electroforesis en Gel de Poliacrilamida Nativa , Neoplasias/metabolismo , Neoplasias/patología , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA