Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Nature ; 593(7858): 211-217, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33981050

RESUMEN

Advanced beyond-silicon electronic technology requires both channel materials and also ultralow-resistance contacts to be discovered1,2. Atomically thin two-dimensional semiconductors have great potential for realizing high-performance electronic devices1,3. However, owing to metal-induced gap states (MIGS)4-7, energy barriers at the metal-semiconductor interface-which fundamentally lead to high contact resistance and poor current-delivery capability-have constrained the improvement of two-dimensional semiconductor transistors so far2,8,9. Here we report ohmic contact between semimetallic bismuth and semiconducting monolayer transition metal dichalcogenides (TMDs) where the MIGS are sufficiently suppressed and degenerate states in the TMD are spontaneously formed in contact with bismuth. Through this approach, we achieve zero Schottky barrier height, a contact resistance of 123 ohm micrometres and an on-state current density of 1,135 microamps per micrometre on monolayer MoS2; these two values are, to the best of our knowledge, the lowest and highest yet recorded, respectively. We also demonstrate that excellent ohmic contacts can be formed on various monolayer semiconductors, including MoS2, WS2 and WSe2. Our reported contact resistances are a substantial improvement for two-dimensional semiconductors, and approach the quantum limit. This technology unveils the potential of high-performance monolayer transistors that are on par with state-of-the-art three-dimensional semiconductors, enabling further device downscaling and extending Moore's law.

2.
Nano Lett ; 24(6): 2102-2109, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38295289

RESUMEN

The graphene-all-around (GAA) structure has been verified to grow directly at 380 °C using hot-wire chemical vapor deposition, within the thermal budget of the back end of the line (BEOL). The cobalt (Co) interconnects with the GAA structure have demonstrated a 10.8% increase in current density, a 27% reduction in resistance, and a 36 times longer electromigration lifetime. X-ray photoelectron spectroscopy and density functional theory calculations have revealed the presence of bonding between carbon and Co, which makes the Co atom more stable to resist external forces. The ability of graphene to act as a diffusion barrier in the GAA structure was confirmed through time-dependent dielectric breakdown measurement. The Co interconnect within the GAA structure exhibits enhanced electrical properties and reliability, which indicates compatibility applications as next-generation interconnect materials in CMOS BEOL.

3.
Nano Lett ; 24(29): 8880-8886, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38981026

RESUMEN

We develop a novel metal contact approach using an antimony (Sb)-platinum (Pt) bilayer to mitigate Fermi-level pinning in 2D transition metal dichalcogenide channels. This strategy allows for control over the transport polarity in monolayer WSe2 devices. By adjustment of the Sb interfacial layer thickness from 10 to 30 nm, the effective work function of the contact/WSe2 interface can be tuned from 4.42 eV (p-type) to 4.19 eV (n-type), enabling selectable n-/p-FET operation in enhancement mode. The shift in effective work function is linked to Sb-Se bond formation and an emerging n-doping effect. This work demonstrates high-performance n- and p-FETs with a single WSe2 channel through Sb-Pt contact modulation. After oxide encapsulation, the maximum current density at |VD| = 1 V reaches 170 µA/µm for p-FET and 165 µA/µm for n-FET. This approach shows promise for cost-effective CMOS transistor applications using a single channel material and metal contact scheme.

4.
Langmuir ; 40(29): 14978-14989, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38946167

RESUMEN

An atmospheric pressure plasma jet (APPJ) is used to process electrochemically deposited NiFe on carbon paper (NiFe/CP). The reactive oxygen and nitrogen species (RONs) of the APPJ modify the surface properties, chemical bonding types, and oxidation states of the material at the self-sustained temperature of the APPJ. The APPJ treatment further enhances the hydrophilicity and creates a higher disorder level in the carbon material. Moreover, the metal carbide bonds of NiFe/CP formed in the electrochemical deposition (ED) process are converted to metal oxide bonds after APPJ processing. The potential application of APPJ treatment on NiFe/CP in alkaline water electrolysis is demonstrated. With more oxygen-containing species and better hydrophilicity after APPJ treatment, APPJ-treated NiFe/CP is applied as the electrocatalyst for the oxygen evolution reaction (OER) in alkaline water electrolysis. APPJ-treated NiFe/CP is also used in a custom-made anion-exchange membrane water electrolyzer (AEMWE); this should contribute toward realizing the practical large-scale application of AEM for hydrogen production.

5.
Angew Chem Int Ed Engl ; 62(6): e202214963, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36484557

RESUMEN

Fermi's golden rule, a remarkable concept for the transition probability involving continuous states, is applicable to the interfacial electron-transporting efficiency via correlation with the surface density of states (SDOS). Yet, this concept has not been reported to tailor single-molecule junctions where gold is an overwhelmingly popular electrode material due to its superior amenability in regenerating molecular junctions. At the Fermi level, however, the SDOS of gold is small due to its fully filled d-shell. To increase the electron-transport efficiency, herein, gold electrodes are modified by a monolayer of platinum or palladium that bears partially filled d-shells and exhibits significant SDOS at the Fermi energy. An increase by 2-30 fold is found for single-molecule conductance of α,ω-hexanes bridged via common headgroups. The improved junction conductance is attributed to the electrode self-energy which involves a stronger coupling with the molecule and a larger SDOS participated by d-electrons at the electrode-molecule interfaces.

6.
Opt Express ; 30(11): 18552-18561, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-36221654

RESUMEN

The effect of atomic-layer deposition (ALD) sidewall passivation on the enhancement of the electrical and optical efficiency of micro-light-emitting diode (µ-LED) is investigated. Various blue light µ-LED devices (from 5 × 5 µm2 to 100 × 100 µm2) with ALD-Al2O3 sidewall passivation were fabricated and exhibited lower leakage and better external quantum efficiency (EQE) comparing to samples without ALD-Al2O3 sidewall treatment. Furthermore, the EQE values of 5 × 5 and 10 × 10 µm2 devices yielded an enhancement of 73.47% and 66.72% after ALD-Al2O3 sidewall treatments process, and the output power also boosted up 69.3% and 69.9%. The Shockley-Read-Hall recombination coefficient can be extracted by EQE data fitting, and the recombination reduction in the ALD samples can be observed. The extracted surface recombination velocities are 551.3 and 1026 cm/s for ALD and no-ALD samples, respectively.

7.
J Phys Chem A ; 125(4): 943-953, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33481595

RESUMEN

Exciton delocalization relates to many important photophysical processes such as excitation energy transfer, charge separation, and singlet fission. Here, we analyze the exciton delocalization through the photophysical measurements of the molecular crystal 2,2'-(thiazolo[5,4-d]thiazole-2,5-diyl)bis(4-methylphenol) (m-MTTM), which is the segregated HJ-aggregate confirmed by the calculation of exciton coupling along each direction in the crystal structure. Linearly polarized steady-state absorption spectroscopy verifies that the red-shifted optical transition majorly arises from the aggregates unparalleled to the a-axis. In addition, the temperature-dependent emission spectra show the increase of 0-0 versus 0-1 vibronic emission ratio as the temperature decreases with the coherence number equaling 2.2-1.0 at 140-200 K, which is the characteristic behavior of J-aggregates. To elaborate these observations, we carry out the simulation with the Holstein-type Hamiltonian considering short-range charge-transfer-mediated couplings (perturbative regime) under the two-particle approximation, showing that the 3 × 3 laminar-like aggregates in the ac-plane and the 3 × 3 × 2 three-dimensional aggregates fit well with the emission spectrum at 140 K. In the 3 × 3 aggregates, the coherence function in the ac-plane shows the in-phase correlation along (1,0,-1), elucidating how J-aggregates form in segregated HJ-aggregates with dominant positive coupling. Under the strong intralayer out-of-phase correlation, the 3 × 3 × 2 aggregates demonstrate that the vibronic coupling has a great impact on the interlayer correlation. Furthermore, the coherence function along (0,1/2,-1/2) and (-1,1/2,-1/2) exhibits the thermal-activated phase flipping. These discoveries pave the ways for further manipulations of exciton delocalization in three-dimensional molecular solids.

8.
J Am Chem Soc ; 142(16): 7469-7479, 2020 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-32223139

RESUMEN

Dinuclear Pt(III) complexes were commonly reported to have short-lived lowest-lying triplet states, resulting in extremely weak or no photoluminescence. To overcome this obstacle, a new series of dinuclear Pt(III) complexes, named Pt2a-Pt2c, were strategically designed and synthesized using donor (D)-acceptor (A)-type oxadiazole-thiol chelates as bridging ligands. These dinuclear Pt(III) complexes possess a d7-d7 electronic configuration and exhibit intense phosphorescence under ambient conditions. Among them, Pt2a exhibits orange phosphorescence maximized at 618 nm in degassed dichloromethane solution (Φp ≈ 8.2%, τp ≈ 0.10 µs) and near-infrared (NIR) emission at 749 nm (Φp ≈ 10.1% τp ≈ 0.66 µs) in the crystalline powder and at 704 nm (Φp ≈ 33.1%, τp ≈ 0.34 µs) in the spin-coated neat film. An emission blue-shifted by more than 3343 cm-1 is observed under mechanically ground crystalline Pt2a, affirming intermolecular interactions in the solid states. Time-dependent density functional theory (TD-DFT) discloses the lowest-lying electronic transition of Pt2a-Pt2c complexes to be a bridging ligand-metal-metal charge transfer (LMMCT) transition. The long-lived triplet states of these dinuclear platinum(III) complexes may find potential use in lighting. Employing Pt2a as an emitter, high-performance organic light-emitting diodes (OLEDs) were fabricated with NIR emission at 716 nm (η = 5.1%), red emission at 614 nm (η = 8.7%), and white-light emission (η = 11.6%) in nondoped, doped (in mCP), and hybrid (in CzACSF) devices, respectively.

9.
Nanotechnology ; 31(33): 335602, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32369779

RESUMEN

Deposition of layers of graphene on silicon has the potential for a wide range of optoelectronic and mechanical applications. However, direct growth of graphene on silicon has been difficult due to the inert, oxidized silicon surfaces. Transferring graphene from metallic growth substrates to silicon is not a good solution either, because most transfer methods involve multiple steps that often lead to polymer residues or degradation of sample quality. Here we report a single-step method for large-area direct growth of continuous horizontal graphene sheets and vertical graphene nano-walls on silicon substrates by plasma-enhanced chemical vapor deposition (PECVD) without active heating. Comprehensive studies utilizing Raman spectroscopy, x-ray/ultraviolet photoelectron spectroscopy (XPS/UPS), atomic force microscopy (AFM), scanning electron microscopy (SEM) and optical transmission are carried out to characterize the quality and properties of these samples. Data gathered by the residual gas analyzer (RGA) during the growth process further provide information about the synthesis mechanism. Additionally, ultra-low friction (with a frictional coefficient ∼0.015) on multilayer graphene-covered silicon surface is achieved, which is approaching the superlubricity limit (for frictional coefficients <0.01). Our growth method therefore opens up a new pathway towards scalable and direct integration of graphene into silicon technology for potential applications ranging from structural superlubricity to nanoelectronics, optoelectronics, and even the next-generation lithium-ion batteries.

10.
Opt Express ; 27(16): A1308-A1323, 2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-31510595

RESUMEN

A simulation scheme was developed to explore the light distribution of full-color micron-scale light-emitting diode (LED) arrays. The influences of substrate thickness, patterning, and cutting angle of the substrate on several important features, such as light field pattern, light extraction efficiency, and color variation, were evaluated numerically. An experiment was conducted; the results were consistent with simulation results for a 225 × 125 µm2 miniLED and those for an 80 × 80 µm2 microLED. Based on the simulation results, the light extraction efficiency of LED devices with a substrate increases by 67.75% over the extraction efficiency of those without a substrate. The light extraction efficiency of LED devices with a substrate increases by 113.55% when an additional patterned design is used on green and blue chips. The calculated large angle Δu'v' can be as low as 0.015 for miniLED devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA