Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 178(6): 1478-1492.e20, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31474362

RESUMEN

Liver fibrosis is a very common condition seen in millions of patients with various liver diseases, and yet no effective treatments are available owing to poorly characterized molecular pathogenesis. Here, we show that leukocyte cell-derived chemotaxin 2 (LECT2) is a functional ligand of Tie1, a poorly characterized endothelial cell (EC)-specific orphan receptor. Upon binding to Tie1, LECT2 interrupts Tie1/Tie2 heterodimerization, facilitates Tie2/Tie2 homodimerization, activates PPAR signaling, and inhibits the migration and tube formations of EC. In vivo studies showed that LECT2 overexpression inhibits portal angiogenesis, promotes sinusoid capillarization, and worsens fibrosis, whereas these changes were reversed in Lect2-KO mice. Adeno-associated viral vector serotype 9 (AAV9)-LECT2 small hairpin RNA (shRNA) treatment significantly attenuates fibrosis. Upregulation of LECT2 is associated with advanced human liver fibrosis staging. We concluded that targeting LECT2/Tie1 signaling may represent a potential therapeutic target for liver fibrosis, and serum LECT2 level may be a potential biomarker for the screening and diagnosis of liver fibrosis.


Asunto(s)
Células Endoteliales/metabolismo , Hepatocitos/metabolismo , Péptidos y Proteínas de Señalización Intercelular/fisiología , Cirrosis Hepática/metabolismo , Hígado/metabolismo , Receptores TIE/metabolismo , Animales , Biomarcadores/metabolismo , Capilares/metabolismo , Células Endoteliales/citología , Células Endoteliales/patología , Células HEK293 , Hepatocitos/citología , Hepatocitos/patología , Humanos , Péptidos y Proteínas de Señalización Intercelular/sangre , Hígado/irrigación sanguínea , Hígado/patología , Cirrosis Hepática/diagnóstico , Ratones Endogámicos C57BL
2.
Proc Natl Acad Sci U S A ; 119(46): e2208804119, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36343253

RESUMEN

Neuronal PER-ARNT-SIM (PAS) domain protein 4 (NPAS4) is a protective transcriptional regulator whose dysfunction has been linked to a variety of neuropsychiatric and metabolic diseases. As a member of the basic helix-loop-helix PER-ARNT-SIM (bHLH-PAS) transcription factor family, NPAS4 is distinguished by an ability to form functional heterodimers with aryl hydrocarbon receptor nuclear translocator (ARNT) and ARNT2, both of which are also bHLH-PAS family members. Here, we describe the quaternary architectures of NPAS4-ARNT and NPAS4-ARNT2 heterodimers in complexes involving DNA response elements. Our crystallographic studies reveal a uniquely interconnected domain conformation for the NPAS4 protein itself, as well as its differentially configured heterodimeric arrangements with both ARNT and ARNT2. Notably, the PAS-A domains of ARNT and ARNT2 exhibit variable conformations within these two heterodimers. The ARNT PAS-A domain also forms a set of interfaces with the PAS-A and PAS-B domains of NPAS4, different from those previously noted in ARNT heterodimers formed with other class I bHLH-PAS family proteins. Our structural observations together with biochemical and cell-based interrogations of these NPAS4 heterodimers provide molecular glimpses of the NPAS4 protein architecture and extend the known repertoire of heterodimerization patterns within the bHLH-PAS family. The PAS-B domains of NPAS4, ARNT, and ARNT2 all contain ligand-accessible pockets with appropriate volumes required for small-molecule binding. Given NPAS4's linkage to human diseases, the direct visualization of these PAS domains and the further understanding of their relative positioning and interconnections within the NPAS4-ARNT and NPAS4-ARNT2 heterodimers may provide a road map for therapeutic discovery targeting these complexes.


Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Humanos , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , ADN/metabolismo , Regulación de la Expresión Génica , Elementos de Respuesta , Multimerización de Proteína
3.
Mol Cancer ; 23(1): 86, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38685067

RESUMEN

BACKGROUND: CDC6 is an oncogenic protein whose expression level fluctuates during the cell cycle. Although several E3 ubiquitin ligases responsible for the ubiquitin-mediated proteolysis of CDC6 have been identified, the deubiquitination pathway for CDC6 has not been investigated. METHODS: The proteome-wide deubiquitinase (DUB) screening was used to identify the potential regulator of CDC6. Immunofluorescence, protein half-life and deubiquitination assays were performed to determine the protein stability of CDC6. Gain- and loss-of-function experiments were implemented to analyse the impacts of OUTD6A-CDC6 axis on tumour growth and chemosensitivity in vitro. N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-induced conditional Otud6a knockout (CKO) mouse model and tumour xenograft model were performed to analyse the role of OTUD6A-CDC6 axis in vivo. Tissue specimens were used to determine the association between OTUD6A and CDC6. RESULTS: OTUD6A interacts with, depolyubiquitinates and stabilizes CDC6 by removing K6-, K33-, and K48-linked polyubiquitination. Moreover, OTUD6A promotes cell proliferation and decreases sensitivity to chemotherapy by upregulating CDC6. CKO mice are less prone to BCa tumorigenesis induced by BBN, and knockdown of OTUD6A inhibits tumour progression in vivo. Furthermore, OTUD6A protein level has a positive correlation with CDC6 protein level, and high protein levels of OTUD6A and CDC6 are associated with poor prognosis in patients with bladder cancer. CONCLUSIONS: We reveal an important yet missing piece of novel DUB governing CDC6 stability. In addition, our findings propose a model for the OTUD6A-CDC6 axis that provides novel insights into cell cycle and chemosensitivity regulation, which may become a potential biomarker and promising drug target for cancer treatment.


Asunto(s)
Proteínas de Ciclo Celular , Resistencia a Antineoplásicos , Proteínas Nucleares , Ubiquitinación , Animales , Humanos , Ratones , Resistencia a Antineoplásicos/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular , Progresión de la Enfermedad , Ratones Noqueados , Ensayos Antitumor por Modelo de Xenoinjerto , Regulación Neoplásica de la Expresión Génica , Enzimas Desubicuitinizantes/metabolismo , Enzimas Desubicuitinizantes/genética , Modelos Animales de Enfermedad
4.
J Am Chem Soc ; 145(30): 16924-16937, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37466996

RESUMEN

The genomes of myxobacteria harbor a variety of biosynthetic gene clusters encoding numerous secondary metabolites, including ribosomally synthesized and post-translationally modified peptides (RiPPs) with diverse chemical structures and biological activities. However, the biosynthetic potential of RiPPs from myxobacteria remains barely explored. Herein, we report a novel myxobacteria lanthipeptide myxococin identified from Myxococcus fulvus. Myxococins represent the first example of lanthipeptides, of which the characteristic multiple thioether rings are installed by employing a Class II lanthipeptide synthetase MfuM and a Class I lanthipeptide cyclase MfuC in a cascaded way. Unprecedentedly, we biochemically characterized the first M61 family aminopeptidase MfuP involved in RiPP biosynthesis, demonstrating that MfuP showed the activity of an endopeptidase activity. MfuP is leader-independent but strictly selective for the multibridge structure of myxococin A and responsible for unwrapping two rings via amide bond hydrolysis, yielding myxococin B. Furthermore, the X-ray crystal structure of MfuP and structural analysis, including active-site mutations, are reported. Finally, myxococins are evaluated to exhibit anti-inflammatory activity in lipopolysaccharide-induced macrophages without detectable cytotoxicity.


Asunto(s)
Myxococcales , Péptidos/química , Procesamiento Proteico-Postraduccional
5.
Bioorg Med Chem ; 77: 117041, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36521398

RESUMEN

Benzisothiazole dioxide compound was reported to agonize HIF-2 stabilization and improve EPO production, thus conceiving a potential strategy to treat disease with chronic hypoxia exemplified by renal anemia. Herein, on the bases of multiple molecular and cellular assays, a series of benzisothiazole derivatives have been synthesized and their structure-activity relationship was evaluated. The SAR and molecular docking studies have revealed the structural insights on the rational design of HIF-2 agonist and discovered a more potential 5-bromine substituted analogue, which showed 2-4 times improvement of HIF-2 downstream gene transcriptions, including EPO production. The present results suggest the therapeutic potential of the compounds for diseases related to EPO insufficiency.


Asunto(s)
Anemia , Eritropoyetina , Humanos , Eritropoyetina/farmacología , Eritropoyetina/genética , Simulación del Acoplamiento Molecular , Anemia/tratamiento farmacológico , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico
6.
Bioorg Chem ; 139: 106676, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37352720

RESUMEN

Neuronal PAS domain protein 3 (NPAS3), a basic helix-loop-helix PER-ARNT-SIM (bHLH-PAS) family member, is a pivotal transcription factor in neuronal regeneration, development, and related diseases, regulating the expression of downstream genes. Despite several modulators of certain bHLH-PAS family proteins being identified, the NPAS3-targeted compound has yet to be reported. Herein, we discovered a hit compound BI-78D3 that directly blocks the NPAS3-ARNT heterodimer formation by covalently binding to the aryl hydrocarbon receptor nuclear translocator (ARNT) subunit. Further optimization based on the hit scaffold yielded a highly potent Compound 6 with a biochemical EC50 value of 282 ± 61 nM and uncovered the 5-nitrothiazole-2-sulfydryl as a cysteine-targeting covalent warhead. Compound 6 effectively down-regulated NPAS3's transcriptional function by disrupting the interface of NPAS3-ARNT complexes at cellular level. In conclusion, our study identifies the 5-nitrothiazole-2-sulfydryl as a cysteine-modified warhead and provides a strategy that blocks the NPAS3-ARNT heterodimerization by covalently conjugating ARNT Cys336 residue. Compound 6 may serve as a promising chemical probe for exploring NPAS3-related physiological functions.


Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo , Receptores de Hidrocarburo de Aril , Translocador Nuclear del Receptor de Aril Hidrocarburo/química , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Cisteína/metabolismo , Unión Proteica , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo
7.
Mol Pharmacol ; 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36167425

RESUMEN

Hypoxia-inducible factor (HIF)-2α and its obligate heterodimerization partner aryl hydrocarbon receptor nuclear translocator (ARNT), are both members of the basic helix-loop-helix-PER-ARNT-SIM (bHLH-PAS) transcription factor family. Previous studies have identified HIF-2α as a key oncogenic driver in clear cell renal cell carcinoma (ccRCC), rendering it a promising drug target for this type of kidney cancer. Belzutifan is the first HIF-2α inhibitor approved for treating ccRCC and other cancers associated with the von Hippel-Lindau (VHL) disease. However, the detailed inhibitory mechanism of belzutifan at molecular level is still unclear. Here we obtained the crystal structure of HIF-2α-ARNT heterodimer in complex with belzutifan at 2.75 Å resolution. The complex structure shows that belzutifan binds into the PAS-B pocket of HIF-2α, and it destabilizes the dimerization of HIF-2α and ARNT through allosteric effects mainly mediated by the key residue M252 of HIF-2α near the dimer interface. We further explored the inhibitory effects of belzutifan using biochemical and functional assays. The time-resolved fluorescence energy transfer (TR-FRET)-based binding assay showed that belzutifan disrupts the dimerization of HIF-2α and ARNT with a Ki value of 20 nM. The luciferase reporter assay indicated that belzutifan can efficiently inhibit the transcriptional activity of HIF-2α with an IC50 value of 17 nM. Besides, the real-time PCR assay illustrated that belzutifan can reduce the expression of HIF-2α downstream genes in 786-O kidney cancer cells in a dose-dependent manner. Our work reveals the molecular mechanism by which belzutifan allosterically inhibits HIF-2α and provides valuable information for the subsequent drug development targeting HIF-2α. Significance Statement The bHLH-PAS family of transcription factors are an emerging group of small-molecule drug targets. Belzutifan, originally developed by Peloton Therapeutics, is the first FDA-approved drug directly binding to a bHLH-PAS protein, the hypoxia-inducible factor (HIF)-2α. Based on the protein-drug complex structure, biochemical binding assays, and functional profiling of downstream gene expression, this study reveals the regulatory mechanism of how belzutifan allosterically destabilizes HIF-2α's heterodimerization with its obligate partner protein, thus reducing their transcriptional activity that links to tumor progression.

8.
Acta Pharmacol Sin ; 43(10): 2474-2481, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35132191

RESUMEN

Transcription factors (TFs) specifically bind to DNA, recruit cofactor proteins and modulate target gene expression, rendering them essential roles in the regulation of numerous biological processes. Meanwhile, mutated or dysregulated TFs are involved in a variety of human diseases. As multiple signaling pathways ultimately converge at TFs, targeting these TFs directly may prove to be more specific and cause fewer side effects, than targeting the upfront conventional targets in these pathways. All these features together endue TFs with great potential and high selectivity as therapeutic drug targets. However, TFs have been historically considered "undruggable", mainly due to their lack of structural information, especially about the appropriate ligand-binding sites and protein-protein interactions, leading to relatively limited choices in the TF-targeting drug design. In this review, we summarize the recent progress of TF-targeting drugs and highlight certain strategies used for targeting TFs, with a number of representative drugs that have been approved or in the clinical trials as examples. Various approaches in targeting TFs directly or indirectly have been developed. Common direct strategies include aiming at defined binding pockets, proteolysis-targeting chimaera (PROTAC), and mutant protein reactivation. In contrast, the indirect ones comprise inhibition of protein-protein interactions between TF and other proteins, blockade of TF expression, targeting the post-translational modifications, and targeting the TF-DNA interactions. With more comprehensive structural information about TFs revealed by the powerful cryo-electron microscopy technology and predicted by machine-learning algorithms, plus more efficient compound screening platforms and a deeper understanding of TF-disease relationships, the development of TF-targeting drugs will certainly be accelerated in the near future.


Asunto(s)
ADN , Factores de Transcripción , Microscopía por Crioelectrón , ADN/metabolismo , Humanos , Ligandos , Proteínas Mutantes , Factores de Transcripción/metabolismo
9.
Acta Biochim Biophys Sin (Shanghai) ; 54(1): 12-24, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35130630

RESUMEN

The nuclear receptors (NRs) are an evolutionarily related family of transcription factors, which share certain common structural characteristics and regulate the expressions of various genes by recognizing different response elements. NRs play important roles in cell differentiation, proliferation, survival and apoptosis, rendering them indispensable in many physiological activities including growth and metabolism. As a result, dysfunctions of NRs are closely related to a variety of diseases, such as diabetes, obesity, infertility, inflammation, the Alzheimer's disease, cardiovascular diseases, prostate and breast cancers. Meanwhile, small-molecule drugs directly targeting NRs have been widely used in the treatment of above diseases. Here we summarize recent progress in the structural biology studies of NR family proteins. Compared with the dozens of structures of isolated DNA-binding domains (DBDs) and the striking more than a thousand of structures of isolated ligand-binding domains (LBDs) accumulated in the Protein Data Bank (PDB) over thirty years, by now there are only a small number of multi-domain NR complex structures, which reveal the integration of different NR domains capable of the allosteric signal transduction, or the detailed interactions between NR and various coregulator proteins. On the other hand, the structural information about several orphan NRs is still totally unavailable, hindering the further understanding of their functions. The fast development of new technologies in structural biology will certainly help us gain more comprehensive information of NR structures, inspiring the discovery of novel NR-targeting drugs with a new binding site beyond the classic LBD pockets and/or a new mechanism of action.


Asunto(s)
Receptores Citoplasmáticos y Nucleares , Factores de Transcripción , Sitios de Unión/genética , Bases de Datos de Proteínas , Dominios Proteicos , Factores de Transcripción/metabolismo
10.
J Sport Rehabil ; 31(8): 1023-1030, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35728805

RESUMEN

CONTEXT: An Optimizing Performance through Intrinsic Motivation and Attention for Learning theory-based motor learning intervention delivering autonomy support and enhanced expectancies (EE) shows promise for reducing cognitive-motor dual-task costs, or the relative difference in primary task performance when completed with and without a secondary cognitive task, that facilitate adaptive injury-resistant movement response. The current pilot study sought to determine the effectiveness of an autonomy support versus an EE-enhanced virtual reality motor learning intervention to reduce dual-task costs during single-leg balance. DESIGN: Within-subjects 3 × 3 trial. METHODS: Twenty-one male and 24 female participants, between the ages of 18 and 30 years, with no history of concussion, vertigo, lower-extremity surgery, or lower-extremity injuries the previous 6 months, were recruited for training sessions on consecutive days. Training consisted of 5 × 8 single-leg squats on each leg, during which all participants mimicked an avatar through virtual reality goggles. The autonomy support group chose an avatar color, and the EE group received positive kinematic biofeedback. Baseline, immediate, and delayed retention testing consisted of single-leg balancing under single- and dual-task conditions. Mixed-model analysis of variances compared dual-task costs for center of pressure velocity and SD between groups on each limb. RESULTS: On the right side, dual-task costs for anterior-posterior center of pressure mean and SD were reduced in the EE group (mean Δ = -51.40, Cohen d = 0.80 and SD Δ = -66.00%, Cohen d = 0.88) compared with the control group (mean Δ = -22.09, Cohen d = 0.33 and SD Δ = -36.10%, Cohen d = 0.68) from baseline to immediate retention. CONCLUSIONS: These findings indicate that EE strategies that can be easily implemented in a clinic or sport setting may be superior to task-irrelevant AS approaches for influencing injury-resistant movement adaptations.


Asunto(s)
Biorretroalimentación Psicológica , Desempeño Psicomotor , Humanos , Masculino , Femenino , Recién Nacido , Desempeño Psicomotor/fisiología , Estudios de Factibilidad , Proyectos Piloto , Análisis y Desempeño de Tareas
11.
Nat Chem Biol ; 15(4): 367-376, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30804532

RESUMEN

Hypoxia-inducible factor-2 (HIF-2) is a heterodimeric transcription factor formed through dimerization between an oxygen-sensitive HIF-2α subunit and its obligate partner subunit ARNT. Enhanced HIF-2 activity drives some cancers, whereas reduced activity causes anemia in chronic kidney disease. Therefore, modulation of HIF-2 activity via direct-binding ligands could provide many new therapeutic benefits. Here, we explored HIF-2α chemical ligands using combined crystallographic, biophysical, and cell-based functional studies. We found chemically unrelated antagonists to employ the same mechanism of action. Their binding displaced residue M252 from inside the HIF-2α PAS-B pocket toward the ARNT subunit to weaken heterodimerization. We also identified first-in-class HIF-2α agonists and found that they significantly displaced pocket residue Y281. Its dramatic side chain movement increases heterodimerization stability and transcriptional activity. Our findings show that despite binding to the same HIF-2α PAS-B pocket, ligands can manifest as inhibitors versus activators by mobilizing different pocket residues to allosterically alter HIF-2α-ARNT heterodimerization.


Asunto(s)
Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Translocador Nuclear del Receptor de Aril Hidrocarburo/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Cristalografía por Rayos X , Dimerización , Ligandos , Ratones , Modelos Moleculares , Unión Proteica , Multimerización de Proteína , Factores de Transcripción/fisiología
12.
Nature ; 524(7565): 303-8, 2015 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-26245371

RESUMEN

The hypoxia-inducible factors (HIFs) coordinate cellular adaptations to low oxygen stress by regulating transcriptional programs in erythropoiesis, angiogenesis and metabolism. These programs promote the growth and progression of many tumours, making HIFs attractive anticancer targets. Transcriptionally active HIFs consist of HIF-α and ARNT (also called HIF-1ß) subunits. Here we describe crystal structures for each of mouse HIF-2α-ARNT and HIF-1α-ARNT heterodimers in states that include bound small molecules and their hypoxia response element. A highly integrated quaternary architecture is shared by HIF-2α-ARNT and HIF-1α-ARNT, wherein ARNT spirals around the outside of each HIF-α subunit. Five distinct pockets are observed that permit small-molecule binding, including PAS domain encapsulated sites and an interfacial cavity formed through subunit heterodimerization. The DNA-reading head rotates, extends and cooperates with a distal PAS domain to bind hypoxia response elements. HIF-α mutations linked to human cancers map to sensitive sites that establish DNA binding and the stability of PAS domains and pockets.


Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Subunidad alfa del Factor 1 Inducible por Hipoxia/química , Factores de Transcripción ARNTL/química , Factores de Transcripción ARNTL/metabolismo , Animales , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sitios de Unión , Proteínas CLOCK/química , Proteínas CLOCK/metabolismo , Hipoxia de la Célula/genética , Cristalografía por Rayos X , ADN/química , ADN/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones , Modelos Moleculares , Mutación/genética , Neoplasias/genética , Fosforilación , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Elementos de Respuesta/genética
13.
Int J Mol Sci ; 21(21)2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33167400

RESUMEN

There is strong evidence that exposure to fine particulate matter (PM2.5) and a high-fat diet (HFD) increase the risk of mortality from atherosclerotic cardiovascular diseases. Recent studies indicate that PM2.5 generated by combustion activates the Aryl Hydrocarbon Receptor (AHR) and inflammatory cytokines contributing to PM2.5-mediated atherogenesis. Here we investigate the effects of components of a HFD on PM-mediated activation of AHR in macrophages. Cells were treated with components of a HFD and AHR-activating PM and the expression of biomarkers of vascular inflammation was analyzed. The results show that glucose and triglyceride increase AHR-activity and PM2.5-mediated induction of cytochrome P450 (CYP)1A1 mRNA in macrophages. Cholesterol, fructose, and palmitic acid increased the PM- and AHR-mediated induction of proinflammatory cytokines in macrophages. Treatment with palmitic acid significantly increased the expression of inflammatory cytokines and markers of vascular injury in human aortic endothelial cells (HAEC) after treatment with PM2.5. The PM2.5-mediated activation of the atherogenic markers C-reactive protein (CRP) and S100A9, a damage-associated molecular pattern molecule, was found to be AHR-dependent and involved protein kinase A (PKA) and a CCAAT/enhancer-binding protein (C/EBP) binding element. This study identified nutritional factors interacting with AHR signaling and contributing to PM2.5-induced markers of atherogenesis and future cardiovascular risk.


Asunto(s)
Aterosclerosis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Biomarcadores/metabolismo , Inflamación/genética , Nutrientes/farmacología , Receptores de Hidrocarburo de Aril/fisiología , Aorta , Aterosclerosis/etiología , Aterosclerosis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Calgranulina B/efectos de los fármacos , Calgranulina B/genética , Calgranulina B/metabolismo , Células Cultivadas , Colesterol/farmacología , Dieta Alta en Grasa , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Fructosa/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/farmacología , Humanos , Inflamación/etiología , Inflamación/metabolismo , Activación de Macrófagos/efectos de los fármacos , Activación de Macrófagos/genética , Macrófagos/efectos de los fármacos , Macrófagos/fisiología , Ácido Palmítico/farmacología , Material Particulado/farmacología , Receptores de Hidrocarburo de Aril/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Triglicéridos/farmacología , Células U937
14.
Nature ; 495(7441): 394-8, 2013 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-23485969

RESUMEN

The hepatocyte nuclear factor 4α (HNF-4α; also known as NR2A1) is a member of the nuclear receptor (NR) family of transcription factors, which have conserved DNA-binding domains and ligand-binding domains. HNF-4α is the most abundant DNA-binding protein in the liver, where some 40% of the actively transcribed genes have a HNF-4α response element. These regulated genes are largely involved in the hepatic gluconeogenic program and lipid metabolism. In the pancreas HNF-4α is also a master regulator, controlling an estimated 11% of islet genes. HNF-4α protein mutations are linked to maturity-onset diabetes of the young, type 1 (MODY1) and hyperinsulinaemic hypoglycaemia. Previous structural analyses of NRs, although productive in elucidating the structure of individual domains, have lagged behind in revealing the connectivity patterns of NR domains. Here we describe the 2.9 Å crystal structure of the multidomain human HNF-4α homodimer bound to its DNA response element and coactivator-derived peptides. A convergence zone connects multiple receptor domains in an asymmetric fashion, joining distinct elements from each monomer. An arginine target of PRMT1 methylation protrudes directly into this convergence zone and sustains its integrity. A serine target of protein kinase C is also responsible for maintaining domain-domain interactions. These post-translational modifications lead to changes in DNA binding by communicating through the tightly connected surfaces of the quaternary fold. We find that some MODY1 mutations, positioned on the ligand-binding domain and hinge regions of the receptor, compromise DNA binding at a distance by communicating through the interjunctional surfaces of the complex. The overall domain representation of the HNF-4α homodimer is different from that of the PPAR-γ-RXR-α heterodimer, even when both NR complexes are assembled on the same DNA element. Our findings suggest that unique quaternary folds and interdomain connections in NRs could be exploited by small-molecule allosteric modulators that affect distal functions in these polypeptides.


Asunto(s)
Factor Nuclear 4 del Hepatocito/química , Modelos Moleculares , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Humanos , Hipoglucemia/genética , Mutación , Mutación Puntual , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína
18.
Environ Geochem Health ; 38(2): 353-62, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26048341

RESUMEN

Twenty trace elements in fine particulate matters (i.e., PM2.5) at urban Chengdu, a southwest megacity of China, were determined to study the characteristics, sources and human health risk of particulate toxic heavy metals. This work mainly focused on eight toxic heavy metal elements (As, Cd, Cr, Cu, Mn, Ni, Pb and Zn). The average concentration of PM2.5 was 165.1 ± 84.7 µg m(-3) during the study period, significantly exceeding the National Ambient Air Quality Standard (35 µg m(-3) in annual average). The particulate heavy metal pollution was very serious in which Cd and As concentrations in PM2.5 significantly surpassed the WHO standard. The enrichment factor values of heavy metals were typically higher than 10, suggesting that they were mainly influenced by anthropogenic sources. More specifically, the Cr, Mn and Ni were slightly enriched, Cu was highly enriched, while As, Cd, Pb and Zn were severely enriched. The results of correlation analysis showed that Cd may come from metallurgy and mechanical manufacturing emissions, and the other metals were predominately influenced by traffic emissions and coal combustion. The results of health risk assessment indicated that As, Mn and Cd would pose a significant non-carcinogenic health risk to both children and adults, while Cr would cause carcinogenic risk. Other toxic heavy metals were within a safe level.


Asunto(s)
Metales Pesados/toxicidad , Material Particulado , Medición de Riesgo , China , Humanos
19.
J Biol Chem ; 289(3): 1866-75, 2014 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-24302727

RESUMEN

The aryl hydrocarbon receptor (AhR) is involved in the regulation of immune responses, T-cell differentiation, and immunity. Here, we show that inflammatory stimuli such as LPS induce the expression of AhR in human dendritic cells (DC) associated with an AhR-dependent increase of CYP1A1 (cytochrome P4501A1). In vivo data confirmed the elevated expression of AhR by LPS and the LPS-enhanced 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-mediated induction of CYP1A1 in thymus of B6 mice. Inhibition of nuclear factor-κB (NF-κB) repressed both normal and LPS-enhanced, TCDD-inducible, AhR-dependent gene expression and canonical pathway control of RelA-regulated AhR-responsive gene expression. LPS-mediated induction of AhR was NF-κB-dependent, as shown in mouse embryonic fibroblasts (MEFs) derived from Rel null mice. AhR expression and TCDD-mediated induction of CYP1A1 was significantly reduced in RelA-deficient MEF compared with wild type MEF cells and ectopic expression of RelA restored the expression of AhR and induction of CYP1A1 in MEF RelA null cells. Promoter analysis of the human AhR gene identified three putative NF-κB-binding elements upstream of the transcription start site. Mutation analysis of the AhR promoter identified one NF-κB site as responsible for mediating the induction of AhR expression by LPS and electrophoretic shift assays demonstrated that this NF-κB motif is recognized by the RelA/p50 heterodimer. Our results show for the first time that NF-κB RelA is a critical component regulating the expression of AhR and the induction of AhR-dependent gene expression in immune cells illustrating the interaction of AhR and NF-κB signaling.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/biosíntesis , Células Dendríticas/metabolismo , Receptores de Hidrocarburo de Aril/biosíntesis , Transducción de Señal , Factor de Transcripción ReIA/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Línea Celular , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Células Dendríticas/patología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Humanos , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Lipopolisacáridos/toxicidad , Ratones , Ratones Noqueados , Mutación , Dibenzodioxinas Policloradas/análogos & derivados , Dibenzodioxinas Policloradas/toxicidad , Receptores de Hidrocarburo de Aril/genética , Elementos de Respuesta , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/inmunología
20.
J Mol Biol ; 436(3): 168352, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37935255

RESUMEN

The mammalian family of basic helix-loop-helix-PER-ARNT-SIM (bHLH-PAS) transcription factors possess the ability to sense and respond to diverse environmental and physiological cues. These proteins all share a common structural framework, comprising a bHLH domain, two PAS domains, and transcriptional activation or repression domain. To function effectively as transcription factors, members of the family must form dimers, bringing together bHLH segments to create a functional unit that allows for DNA response element binding. The significance of bHLH-PAS family is underscored by their involvement in many major human diseases, offering potential avenues for therapeutic intervention. Notably, the clear identification of ligand-binding cavities within their PAS domains enables the development of targeted small molecules. Two examples are Belzutifan, targeting hypoxia-inducible factor (HIF)-2α, and Tapinarof, targeting the aryl hydrocarbon receptor (AHR), both of which have gained regulatory approval recently. Here, we focus on the HIF subfamily. The crystal structures of all three HIF-α proteins have been elucidated, revealing their bHLH and tandem PAS domains are used to engage their dimerization partner aryl hydrocarbon receptor nuclear translocator (ARNT, also called HIF-1ß). A broad range of recent findings point to a shared allosteric modulation mechanism among these proteins, whereby small-molecules at the PAS-B domains exert direct influence over the HIF-α transcriptional functions. As our understanding of the architectural and allosteric mechanisms of bHLH-PAS proteins continues to advance, the possibility of discovering new therapeutic drugs becomes increasingly promising.


Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo , Secuencias Hélice-Asa-Hélice , Animales , Humanos , Translocador Nuclear del Receptor de Aril Hidrocarburo/química , Activación Transcripcional , Multimerización de Proteína , Regulación Alostérica , Dominios Proteicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA