Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Opt Express ; 32(7): 10786-10800, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38570944

RESUMEN

As a new type of active Earth observation technology, airborne hyperspectral lidar combines the advantages of traditional lidar 3D information acquisition and passive hyperspectral imaging technology, and it can achieve integrated imaging detection with a high spatial and hyperspectral resolution. Thus, it has become an important future direction of Earth surface remote sensing technology. This article introduces the design and development of an airborne hyperspectral imaging lidar system. The hyperspectral lidar adopts a focal plane splitting method, combined with an array of 168 optical fibers, to couple wide-spectral-range laser echo signals one by one to the corresponding single tube detector, achieving efficient splitting and precise coupling of supercontinuum laser pulse echo signals. This article proposes a fast synchronous calibration method that is suitable for hyperspectral imaging lidar systems. Results show that the spectral range of the hyperspectral lidar system is 400-900 nm, and the spectral resolution of single-fiber detection is greater than 3 nm. Notably, this article focuses on analyzing the abnormal detection channels based on the calibration results. With the test results of adjacent channels combined, the reason for the abnormal spectral bandwidth of channel 17 is analyzed as an example. This research points out the direction for verifying the design parameters of the hyperspectral lidar prototype and lays an important foundation for airborne flight test of the hyperspectral lidar.

2.
Biomacromolecules ; 25(4): 2574-2586, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38525818

RESUMEN

Developing biocompatible injectable hydrogels with high mechanical strength and rapid strong tissue adhesion for hemostatic sealing of uncontrolled bleeding remains a prevailing challenge. Herein, we engineer an injectable and photo-cross-linkable hydrogel based on naturally derived gelatin methacrylate (GelMA) and N-hydroxysuccinimide-modified poly(γ-glutamic acid) (γPGA-NHS). The chemically dual-cross-linked hydrogel rapidly forms after UV light irradiation and covalently bonds to the underlying tissue to provide robust adhesion. We demonstrate a significantly improved hemostatic efficacy of the hydrogel using various injury models in rats compared to the commercially available fibrin glue. Notably, the hydrogel can achieve hemostasis in porcine liver and spleen incision, and femoral artery puncture models. Moreover, the hydrogel is used for sutureless repair of the liver defect in a rat model with a significantly suppressed inflammatory response, enhanced angiogenesis, and superior healing efficacy compared to fibrin glue. Together, this study offers a promising bioadhesive for treating severe bleeding and facilitating wound repair.


Asunto(s)
Hemostáticos , Hidrogeles , Ratas , Animales , Porcinos , Hidrogeles/farmacología , Hidrogeles/química , Adhesivo de Tejido de Fibrina , Adhesivos , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química , Hemostáticos/farmacología , Hemorragia/tratamiento farmacológico , Cicatrización de Heridas
3.
J Nanobiotechnology ; 22(1): 251, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750597

RESUMEN

BACKGROUND: Hypothermia is a promising therapy for traumatic brain injury (TBI) in the clinic. However, the neuroprotective outcomes of hypothermia-treated TBI patients in clinical studies are inconsistent due to several severe side effects. Here, an injectable refrigerated hydrogel was designed to deliver 3-iodothyronamine (T1AM) to achieve a longer period of local hypothermia for TBI treatment. Hydrogel has four advantages: (1) It can be injected into injured sites after TBI, where it forms a hydrogel and avoids the side effects of whole-body cooling. (2) Hydrogels can biodegrade and be used for controlled drug release. (3) Released T1AM can induce hypothermia. (4) This hydrogel has increased medical value given its simple operation and ability to achieve timely treatment. METHODS: Pol/T hydrogels were prepared by a low-temperature mixing method and characterized. The effect of the Pol/T hydrogel on traumatic brain injury in mice was studied. The degradation of the hydrogel at the body level was observed with a small animal imager. Brain temperature and body temperature were measured by brain thermometer and body thermometer, respectively. The apoptosis of peripheral nerve cells was detected by immunohistochemical staining. The protective effect of the hydrogels on the blood-brain barrier (BBB) after TBI was evaluated by the Evans blue penetration test. The protective effect of hydrogel on brain edema after injury in mice was detected by Magnetic resonance (MR) in small animals. The enzyme linked immunosorbent assay (ELISA) method was used to measure the levels of inflammatory factors. The effects of behavioral tests on the learning ability and exercise ability of mice after injury were evaluated. RESULTS: This hydrogel was able to cool the brain to hypothermia for 12 h while maintaining body temperature within the normal range after TBI in mice. More importantly, hypothermia induced by this hydrogel leads to the maintenance of BBB integrity, the prevention of cell death, the reduction of the inflammatory response and brain edema, and the promotion of functional recovery after TBI in mice. This cooling method could be developed as a new approach for hypothermia treatment in TBI patients. CONCLUSION: Our study showed that injectable and biodegradable frozen Pol/T hydrogels to induce local hypothermia in TBI mice can be used for the treatment of traumatic brain injury.


Asunto(s)
Barrera Hematoencefálica , Lesiones Traumáticas del Encéfalo , Hidrogeles , Hipotermia Inducida , Animales , Lesiones Traumáticas del Encéfalo/terapia , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Ratones , Hidrogeles/química , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Masculino , Hipotermia Inducida/métodos , Neuroprotección/efectos de los fármacos , Encéfalo/patología , Modelos Animales de Enfermedad , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Temperatura Corporal , Ratones Endogámicos C57BL
4.
Biomacromolecules ; 24(2): 690-703, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36534463

RESUMEN

The development of injectable hydrogels with good biocompatibility, self-healing, and superior hemostatic properties is highly desirable in emergency and clinical applications. Herein, we report an in situ injectable and self-healing hemostatic hydrogel based on choline phosphoryl functionalized chitosan (CS-g-CP) and oxidized dextran (ODex). The CP groups were hypothesized to accelerate hemostasis by facilitating erythrocyte adhesion and aggregation. Our results reveal that the CS-g-CP/ODex hydrogels exhibit enhanced blood clotting and erythrocyte adhesion/aggregation capacities compared to those of the CS/ODex hydrogels. The CS-g-CP50/ODex75 hydrogel presents rapid gelation time, good mechanical strength and tissue adhesiveness, satisfactory bursting pressure, and favorable biocompatibility. The hemostatic ability of the CS-g-CP50/ODex75 hydrogel was significantly improved compared to that of the CS/ODex hydrogel and commercial fibrin sealant in the rat tail amputation and liver/spleen injury models. Our study highlights the positive and synergistic effects of CP groups on hemostasis and strongly supports the CS-g-CP50/ODex75 hydrogel as a promising adhesive for hemorrhage control.


Asunto(s)
Quitosano , Hemostáticos , Ratas , Animales , Quitosano/farmacología , Hemostáticos/farmacología , Hidrogeles/farmacología , Dextranos/farmacología , Hemostasis
5.
Appl Opt ; 62(8): 2161-2167, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-37133106

RESUMEN

Realizing the integrated acquisition and identification of the elevation information and spectral information of the observation target is at the frontier and a future trend of Earth observation technology. This study designs and develops a set of airborne hyperspectral imaging lidar optical receiving systems and investigates the detection of the infrared band echo signal of the lidar system. A set of avalanche photodiode (APD) detectors is independently designed to detect the weak echo signal of  800-900 nm band. The actual radius of the photosensitive surface of the APD detector is 0.25 mm. We design and demonstrate the optical focusing system of the APD detector in the laboratory and obtain that the image plane size of the optical fiber end faces of the APD detector from channel 47 to channel 56 is close to 0.3 mm. Results show that the optical focusing system of the self-designed APD detector is reliable. On the basis of the focal plane splitting technology of the fiber array, we couple the echo signal of  800-900 nm band to the corresponding APD detector through the fiber array and conduct a series of test experiments for the APD detector. Field test results of the ground-based platform show that the APD detectors in all channels can complete the remote sensing measurement of 500 m. The development of this APD detector solves the problem of hyperspectral imaging under weak light signals and realizes the accurate detection of ground targets in the infrared band by airborne hyperspectral imaging lidar.

6.
Sensors (Basel) ; 23(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36679687

RESUMEN

In order to conduct more thorough research on the structural characteristics of the atmosphere and the distribution and transmission of atmospheric pollution, the use of remote sensing technology for multi-dimensional detection of the atmosphere is needed. A light-weight, low-volume, low-cost, easy-to-use and low-maintenance mini Infrared Lidar (mIRLidar) sensor is developed for the first time. The model of lidar is established, and the key optical parameters of the mIRLidar are optimized through simulation, in which wavelength of laser, energy of pulse laser, diameter of telescope, field of view (FOV), and bandwidth of filter are included. The volume and weight of the lidar system are effectively reduced through optimizing the structural design and designing a temperature control system to ensure the stable operation of the core components. The mIRLidar system involved a 1064 nm laser (the pulse laser energy 15 µJ, the repetition frequency 5 kHz), a 100 mm aperture telescope (the FOV 1.5 mrad), a 0.5 nm bandwidth of filter and an APD, where the lidar has a volume of 200 mm × 200 mm × 420 mm and weighs about 13.5 kg. It is shown that the lidar can effectively detect three-dimensional distribution and transmission of aerosol and atmospheric pollution within a 5 km detection range, from Horizontal, scanning and navigational atmospheric measurements. It has great potential in the field of meteorological research and environmental monitoring.


Asunto(s)
Atmósfera , Contaminación Ambiental , Atmósfera/análisis , Atmósfera/química , Monitoreo del Ambiente/métodos , Aerosoles , Rayos Láser
7.
Nano Lett ; 22(15): 6350-6358, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35912616

RESUMEN

First-aid hemostatic agents for acute bleeding can save lives in emergency situations. However, rapid hemostasis remains challenging when uncontrolled hemorrhage occurs on lethal noncompressible and irregular wounds. Herein, cellulose-based cryogel microspheres with deliberately customized micromorphologies for ultrafast water transportation and diffusion, including the shark skin riblet-inspired wrinkled surface with low fluid drag and the hydrophilic nanoporous 3D networks, are developed to deal with the acute noncompressible bleeding within seconds. These cryogel microspheres can rapidly absorb a large amount of blood over 6 times their own weight in 10 s and form a robust barrier to seal a bleeding wound without applying pressure. Remarkably, massive bleeding from a cardiac penetrating hole is effectively stopped using the microspheres within 20 s and no blood leakage is observed after 30 min. Additionally, these microspheres could be readily removed without rebleeding and capillary thrombus, which is highly favorable to rapid hemostasis in emergency rescue.


Asunto(s)
Criogeles , Nanoporos , Celulosa , Hemorragia/terapia , Hemostasis , Humanos , Microesferas
8.
Int J Mol Sci ; 24(17)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37685836

RESUMEN

Flexible strain sensors for multi-directional strain detection are crucial in complicated hman-computer interaction (HCI) applications. However, enhancing the anisotropy and sensitivity of the sensors for multi-directional detection in a simple and effective method remains a significant issue. Therefore, this study proposes a flexible strain sensor with anisotropy and high sensitivity based on a high-aspect-ratio V-groove array and a hybrid conductive network of iron nanowires and carbon nanotubes (Fe NWs/CNTs). The sensor exhibits significant anisotropy, with a difference in strain detection sensitivity of up to 35.92 times between two mutually perpendicular directions. Furthermore, the dynamic performance of the sensor shows a good response rate, ranging from 223 ms to 333 ms. The sensor maintains stability and consistent performance even after undergoing 1000 testing cycles. Additionally, the constructed flexible strain sensor is tested using the remote control application of a trolley, demonstrating its high potential for usage in practical HCI systems. This research offers a significant competitive advantage in the development of flexible strain sensors in the field of HCI.


Asunto(s)
Nanotubos de Carbono , Nanocables , Humanos , Anisotropía , Hierro , Computadores
9.
Anal Chem ; 94(9): 4005-4011, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35188754

RESUMEN

Kidney dysfunction is a clinical syndrome that can subsequently result in lethal kidney failure. The exploration of emerging bioimaging contrast agents with translational potential is highly challenging for a feasible diagnosis of kidney dysfunction. Herein, a class of renal-clearable gadolinium nanoparticles (Gd@PEG NPs) with an ultrasmall size of ∼5 nm, good monodispersity, and T1 relaxivity are synthesized using mesoporous silica nanoparticles as the template. Assisted by such renal-clearable Gd@PEG NPs, the diagnosis of kidney dysfunction in a mice model with a damaged kidney has been achieved through in vivo noninvasive magnetic resonance imaging. As a result, this work paves the way to synthesize monodispersible ultrasmall Gd contrast agents, facilitating the exploration of translational strategies for an in vivo analysis of kidney dysfunction.


Asunto(s)
Nanopartículas , Insuficiencia Renal , Animales , Medios de Contraste , Gadolinio , Riñón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Ratones
10.
Opt Express ; 30(8): 13278-13293, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35472944

RESUMEN

Fe resonance fluorescence lidar (Fe lidar) is considered an ideal candidate for temperature and wind measurement in the mesosphere and lower thermosphere region. However, considering the complexity of it, only a few Fe lidars have been operated in a few locations. To develop a Fe lidar with high performance, simulation work is the first important step. A simulation model is built in this paper. The expressions for the temperature-wind uncertainties are derived using the error propagation method. Within the limit of saturation effect, an index decomposition of the lidar and atmospheric parameters are performed. When the dwell time and central frequency shift are optimized to 0.205 and 932 MHz at night and 0.212 and 687 MHz during the day, night and daytime calibration curves are acquired, and after confirming the simulation parameters, the performance of Fe lidar is also evaluated. The simulation model could provide a valuable guidance for Fe lidar design.

11.
Soft Matter ; 18(15): 3004-3012, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35355026

RESUMEN

The properties of stimuli-responsive hydrogels can be tailored under various external stimuli, but it is difficult to realize the customized adjustment of hydrogel properties since the crosslinking degree in the gelation process is intractable. Here, a visible light triggered thiol-disulfide exchange reaction was applied for constructing disulfide-crosslinked hydrogels from P(EMA-SS-PEG), a poly(ethylene glycol) grafted poly(ethyl methacrylate) derivative with a disulfide linkage as the grafting point. This photochemical method provides mild gelation conditions to handily regulate the morphology, mechanical properties, swelling ratio, and degradation rate of hydrogels by simply varying the irradiation time. Based on this strategy, these disulfide-crosslinked hydrogel coatings showed rapid self-healing in 10 min under ambient conditions, which was dependent on the width of the scratch, temperature, and humidity. Notably, spraying water on these coatings could significantly accelerate the self-healing process of large scratches (360 µm) at room temperature with a self-healing time of 1 hour, enabling the practical application of hydrogel coatings in a natural environment.


Asunto(s)
Disulfuros , Hidrogeles , Disulfuros/química , Hidrogeles/química , Luz , Polietilenglicoles/química , Compuestos de Sulfhidrilo/química
12.
Opt Express ; 29(11): 17542-17553, 2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34154295

RESUMEN

To meet the urgent need for surveying and mapping using remote sensing instruments, a hyperspectral imaging lidar using a supercontinuum laser is proposed. This novel lidar system can solve the problem of the mismatching of the traditional lidar retrieved elevation data and hyperspectral data obtained by passive imaging instruments. The optical design of the lidar receiving system is described, developed, and tested in this study. An off-axis parabolic mirror is used as the receiving telescope of the system, and a transmissive grating is used to split the received hyperspectral light to each detection channel. A fiber array equipped with a micro-lens is used to guide the split light to the detectors. In practice, several fibers can be coupled to one detector according to the wavelength sensitivity of different objects. A reference laser is used to monitor the possible energy jitter of each transmitted laser pulse in real time. A spectrum calibration of the receiving system is accomplished in the laboratory, and radiation calibration is applied by receiving the backscattered light reflected by a standard white board. The spectral resolution of a single fiber is approximately 3 nm. An outdoor 500-m distance experiment was carried out for green and yellow leaves in day and evening settings. During the experiment, the wavelength of the laser was 460-900 nm. The reflection spectra collected by the lidar system in day and evening were consistent, indicating that the design of the optical receiving system is reliable and can be used for airborne hyperspectral imaging lidar.

14.
Macromol Rapid Commun ; 39(7): e1700840, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29399914

RESUMEN

A series of polymerization-induced self-assembly (PISA) formulations are developed based on reversible addition-fragmentation chain-transfer (RAFT) dispersion polymerization of semi-fluorinated methacrylates. Alcoholic RAFT dispersion polymerization of 2-(perfluorobutyl)ethyl methacrylate (FBEMA), 2-(perfluorohexyl)ethyl methacrylate (FHEMA), and 2-(perfluorooctyl)ethyl methacrylate (FOEMA) is systematically evaluated to extend the general usability of semi-fluorinated methacrylates to PISA. The nanostructure of the assemblies is correlated to the side-chain length of the monomer: RAFT dispersion polymerization of FBEMA produces spherical micelles, wormlike micelles, and vesicles depending on its degree of polymerization (DP), while only spheres are generated for the PISA of FHEMA. PISA of FOEMA generates liquid crystalline cylindrical micelles, whose diameter increases with the DP of FOEMA. These results demonstrate the general feasibility of semi-fluorinated methacrylates to PISA. Besides, PISA of FHEMA is also realized in a variety of solvents, including iso-propanol, toluene, dioxane, and dimethyl formamide, exhibiting the superior solvent serviceability of the PISA formulations based on semi-fluorinated methacrylates.


Asunto(s)
Hidrocarburos Fluorados/química , Metacrilatos/química
15.
Opt Express ; 24(18): A1210-23, 2016 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-27607724

RESUMEN

We developed an airborne compact rotational Raman lidar (CRL) for use on the University of Wyoming King Air (UWKA) aircraft to obtain two-dimensional (2D) temperature disman tributions. It obtained fine-scale 2D temperature distributions within 3 km below the aircraft for the first time during the PECAN (Plains Elevated Convection At Night) campaign in 2015. The CRL provided nighttime temperature measurements with a random error of <0.5 K within 800 m below aircraft at 45 m vertical and 1000 m horizontal resolution. The temperatures obtained by the CRL and a radiosonde agreed. Along with water vapor and aerosol measurements, the CRL provides critical parameters on the state of the lower atmosphere for a wide range of atmospheric research.

16.
Langmuir ; 32(51): 13706-13715, 2016 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-27966989

RESUMEN

A series of telechelic supramolecular amphiphiles [POSS-Azo8@(ß-CD-PDMAEMA)1→8] was accomplished by orthogonally coupling the multiarm host polymer ß-cyclodextrin-poly(dimethylaminoethyl methacrylate) (ß-CD-PDMAEMA) with an octatelechelic guest molecule azobenzene modified-polyhedral oligomeric silsesquioxanes (POSS-Azo8) under different host-guest ratios. These telechelic supramolecular amphiphiles possess a rigid core and flexible corona. Increasing the multiarm host polymer coupled onto the rigid POSS core made the molecular architecture tend to be symmetrical and spherical. POSS-Azo8@[ß-CD-PDMAEMA]1→8 could self-assemble into diverse morphologies evolving from spherical micelles, wormlike micelles, and branched aggregates to bowl-shaped vesicles. Distinct from the traditional linear amphiphilic polymers, we discovered that the self-assembly of POSS-Azo8@[ß-CD-PDMAEMA]1→8 was dominantly regulated by their molecular architectures instead of hydrophilicity, which has also been verified using computer simulation results.

17.
Biomacromolecules ; 17(10): 3115-3126, 2016 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-27599254

RESUMEN

Michael addition polymerizations of amines and acrylic monomers are versatile approaches to biomaterials for various applications. A combinatorial library of poly(ß-amino ester)s and diverse poly(amido amine)s from diamines and diacrylates or bis(acrylamide)s have been reported, respectively. Furthermore, novel linear and hyperbranched polymers from Michael addition polymerizations of trifunctional amines and acrylic monomers significantly enrich this category of biomaterials. In this Review, we focus on the biomaterials from Michael addition polymerizations of trifunctional amines and acrylic monomers. First we discuss how the polymerization mechanisms, which are determined by the reactivity sequence of the three types of amines of trifunctional amines, i.e., secondary (2°) amines (original), primary (1°) amines, and 2° amines (formed), are affected by the chemistry of monomers, reaction temperature, and solvent. Then we update how to design and synthesize linear and hyperbranched polymers based on the understanding of polymerization mechanisms. Linear polymers containing 2° amines in the backbones can be obtained from polymerizations of diacrylates or bis(acrylamide)s with equimolar trifunctional amine, and several approaches, e.g., 2A2+BB'B″, A3+2BB'B', A2+BB'B″, to hyperbranched polymers are developed. Further through molecular design of monomers, conjugation of functional species to 2° amines in the backbones of linear polymers and the abundant terminal groups of hyperbranched polymers, the amphiphilicity of polymers can be adjusted, and additional stimuli, e.g., thermal, redox, reactive oxidation species (ROS), and light, responses can be integrated with the intrinsic pH response. Finally we discuss the applications of the polymers for gene/drug delivery and bioimaging through exploring their self-assemblies in various motifs, e.g., micelles, polyplexes particles/nanorings and hydrogels. Redox-responsive hyperbranched polymers can display 300 times higher in vitro gene transfection efficiency and provide a higher in vivo siRNA efficacy than PEI. Also redox-responsive micelle carriers can improve the efficacy of anticancer drug and the bioimaging contrast. Further molecular design and optimization of this category of polymers together with in vivo studies should provide safe and efficient biomaterials for clinical applications.


Asunto(s)
Materiales Biocompatibles/química , Sistemas de Liberación de Medicamentos , Técnicas de Transferencia de Gen , Poliaminas/química , Materiales Biocompatibles/uso terapéutico , ADN/química , Terapia Genética , Humanos , Micelas , Poliaminas/uso terapéutico , Polimerizacion , Especies Reactivas de Oxígeno/química , Especies Reactivas de Oxígeno/metabolismo , Transfección
18.
Biomacromolecules ; 17(9): 2920-9, 2016 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-27442328

RESUMEN

Here we have demonstrated a facile method for construction of self-assembled nanoparticles with excellent fluorescent properties by the synergetic combination of unique AIE effects and tadpole-shaped polymers. The introduction of acid-sensitive Schiff base bonds furnished the polymeric vesicles and micelles with unique pH responsiveness that can possess maximal drug-release controllability inside tumor cells upon changes in physical and chemical environments, but present good stability under physiological conditions. Having benefited from the efficient fluorescence resonance energy transfer (FRET), the DOX-loaded fluorescent aggregates were employed for intracellular imaging and self-localization in surveillance of systemic DOX delivery. Cytotoxicity assay of the DOX-loaded aggregates indicated a fast internalization and a high cellular proliferation inhibition to MCF-7 cells while the PEG-POSS-(TPE)7 nanoparticles displayed no cytotoxicity, exhibiting excellent biocompatibility and biological imaging properties. These results indicated that these biodegradable nanoparticles, as a class of effective pH-responsive and visible nanocarriers, have the potential to improve smart drug delivery and enhance the antitumor efficacy for biomedical applications.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos , Imagen Molecular/métodos , Nanopartículas/administración & dosificación , Polímeros/química , Antibióticos Antineoplásicos/química , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/química , Liberación de Fármacos , Humanos , Concentración de Iones de Hidrógeno , Células MCF-7 , Micelas , Nanopartículas/química , Polímeros/administración & dosificación
19.
Biomacromolecules ; 17(1): 291-300, 2016 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-26682612

RESUMEN

Here we demonstrate a type of pH and reduction dual-sensitive biodegradable micelles, which were self-assembled by a cationic polymer in an aqueous solution. Due to tumor cells or tissues showing low pH and high reduction concentration, these micelles possessed specific tumor targetability and maximal drug-release controllability inside tumor cells upon changes in physical and chemical environments, but presented good stability at physiological conditions. CCK-8 assay showed that the DOX-loaded micelles had a similar cytotoxicity for MCF-7 tumor cells as free DOX, and blank micelles had a very low cytotoxicity to the cells. Fluorescent microscopy observation revealed that the drug-loaded micelles could be quickly internalized by endosomes to inhibit cancer cell growth. These results indicated these biodegradable micelles, as a novel and effective pH- and redox-responsive nanocarrier, have a potential to improve drug delivery and enhance the antitumor efficacy.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Doxorrubicina/farmacología , Portadores de Fármacos/farmacología , Liberación de Fármacos/fisiología , Hidroxilaminas/química , Micelas , Neoplasias/tratamiento farmacológico , Biodegradación Ambiental , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Portadores de Fármacos/síntesis química , Portadores de Fármacos/química , Endocitosis , Humanos , Concentración de Iones de Hidrógeno , Células MCF-7 , Oxidación-Reducción
20.
Angew Chem Int Ed Engl ; 55(2): 755-9, 2016 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-26586102

RESUMEN

During the last two decades, cationic polymers have become one of the most promising synthetic vectors for gene transfection. However, the weak interactions formed between DNA and cationic polymers result in low transfection efficacy. Furthermore, the polyplexes formed between cationic polymers and DNA generally exhibit poor stability and toxicity because of the large excess of cationic polymer typically required for complete DNA condensation. Herein, we report the preparation of a novel class of bioreducible cationic nanomicelles by the use of disulfide bonds to connect the cationic shell to the fluorocarbon core. These bioreducible nanomicelles form strong interactions with DNA and completely condense DNA at an N/P ratio of 1. The resulting nanomicelle/DNA polyplexes exhibited high biocompatibility and performed very effectively as a gene-delivery system.


Asunto(s)
ADN/genética , Flúor/química , Micelas , Nanoestructuras , Transfección , Cationes , Microscopía Electrónica de Transmisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA