Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 380
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Glob Chang Biol ; 29(1): 1-4, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36217679

RESUMEN

We compiled a nationwide dataset of carbon dioxide (CO2 ) efflux from 1405 measurements, and found that lakes, reservoirs, and rivers emit a total of 61.9 ± 55.3 TgC as CO2 each year, corresponding to ~6.3% of the annual total national CO2 emission in 2020. Our analysis showed that the presence of anthropogenic disturbances in catchments strongly influences the emission of CO2 from these waters in the non-pristine areas, masking the catchment productivity effect on the emission of CO2 . Our results highlight the need for adjusting climate change models for taking into account anthropogenic effects on CO2 emissions from inland waters.


Asunto(s)
Dióxido de Carbono , Urbanización , Países en Desarrollo , Ríos , Agua
2.
Environ Sci Technol ; 57(46): 17751-17761, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36821784

RESUMEN

In traditional soil heavy metal (HM) pollution assessment, spatial interpolation analysis is often carried out on the limited sampling points in the study area to get the overall status of heavy metal pollution. Unfortunately, in many machine learning spatial information enhancement algorithms, the additional spatial information introduced fails to reflect the hierarchical heterogeneity of the study area. Therefore, we designed hierarchical regionalization labels based on three interpolation techniques (inverse distance weight, ordinary kriging, and trend surface interpolation) as new spatial covariates for a machine learning (ML) model. It was demonstrated that regional spatial information improved the prediction performance of the model (R2 > 0.7). On the basis of the prediction results, the status of HM pollution in the Pearl River Delta (PRD) region was evaluated: cadmium (Cd) and copper (Cu) were the most serious pollutants in the PRD (the point overstandard rates are 18.77% and 12.95%, respectively). The analysis of index importance and bivariate local indicators of spatial association (LISA) shows that the key factors affecting the spatial distribution of heavy metals are geographical and climatic conditions [namely, altitude, humidity index, and normalized vegetation difference index (NDVI)] and some industrial activities (such as metal processing, printing and dyeing, and electronics industry). This study develops a novel approach to improve existing spatial interpolation techniques, which will enable more precise and scientific soil environmental management.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Ríos , Monitoreo del Ambiente/métodos , China , Suelo , Medición de Riesgo
3.
Environ Sci Technol ; 57(31): 11373-11388, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37470763

RESUMEN

The production scalability and increasing demand for nano-black phosphorus materials (nano-BPs) inevitably lead to their environmental leakage, thereby raising the risk of human exposure through inhalation, ingestion, dermal, and even intravenous pathways. Consequently, a systematic evaluation of their potential impacts on human health is necessary. This Review outlines recent progress in the understanding of various biological responses to nano-BPs. Attention is particularly given to the inconsistent toxicological findings caused by a wide variation of nano-BPs' physicochemical properties, toxicological testing methods, and cell types examined in each study. Additionally, cellular uptake and intracellular trafficking, cell death modes, immunological effects, and other biologically relevant processes are discussed in detail, providing evidence for the potential health implications of nano-BPs. Finally, we address the remaining challenges related to the health risk evaluation of nano-BPs and propose a broader range of applications for these promising nanomaterials.


Asunto(s)
Nanoestructuras , Fósforo , Humanos , Fósforo/química , Nanoestructuras/toxicidad , Transporte Biológico
4.
Environ Sci Technol ; 57(4): 1764-1775, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36591971

RESUMEN

The ability to accurately assess the health risks of contaminants is limited by the shortcomings of toxicological standards. Using organophosphate esters (OPEs) as an example, this study attempted to integrate physiologically based pharmacokinetic (PBPK)-based forward dosimetry and in vitro bioassays to assess the likelihood of contaminants inducing biological effects in humans. The total exposure level of OPEs for Chinese residents was 19.5 ± 8.71 ng/kg/day with inhalation being the main exposure pathway. Then, human PBPK models were developed for individual OPEs to predict their steady-state concentrations in human tissues, and the predicted median levels in blood were close to the measurements. The reference doses (RfDs) of OPEs based on in vitro bioassays were comparable to in vivo animal-derived RfDs, demonstrating the reliability of in vitro bioassays. Therefore, the likelihood of OPEs inducing bioactivities in humans (RQin-vitro) was calculated using in vitro toxicity data and OPE levels in human tissues. The RQin-vitros of tris(2-chloroisopropyl) phosphate, tris(1,3-dichloropropyl) phosphate, and triphenyl phosphate (7.68 × 10-5-3.18 × 10-3) were comparable to the risks assessed using traditional RfDs (5.22 × 10-5-1.94 × 10-3), indicating the credibility of the method proposed in this study. This study establishes a new framework to improve the health risk assessment of contaminants without sufficient toxicity data and minimize the need for animal experimentation.


Asunto(s)
Monitoreo del Ambiente , Retardadores de Llama , Humanos , Monitoreo del Ambiente/métodos , Reproducibilidad de los Resultados , Ésteres , Retardadores de Llama/análisis , Organofosfatos/toxicidad , Fosfatos , Medición de Riesgo , Bioensayo , China
5.
Environ Sci Technol ; 57(18): 7285-7297, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37098046

RESUMEN

Biochar-derived dissolved black carbon (DBC) molecules are dependent on the BC formation temperature and affect the fate of emerging contaminants in waters, such as polyvinyl chloride microplastic (MPPVC). However, the temperature-dependent evolution and MPPVC-interaction of DBC molecules remain unclear. Herein, we propose a novel DBC-MPPVC interaction mechanism by systematically interpreting heterogeneous correlations, sequential responses, and synergistic relationships of thousands of molecules and their linking functional groups. Two-dimensional correlation spectroscopy was proposed to combine Fourier transform-ion cyclotron resonance mass spectrometry and spectroscopic datasets. Increased temperature caused diverse DBC molecules and fluorophores, accompanied by molecular transformation from saturation/reduction to unsaturation/oxidation with high carbon oxidation states, especially for molecules with acidic functional groups. The temperature response of DBC molecules detected via negative-/positive-ion electrospray ionization sequentially occurred in unsaturated hydrocarbons → lignin-like → condensed aromatic → lipid-/aliphatic-/peptide-like → tannin-like → carbohydrate-like molecules. DBC molecular changes induced by temperature and MPPVC interaction were closely coordinated, with lignin-like molecules contributing the most to the interaction. Functional groups in DBC molecules with m/z < 500 showed a sequential MPPVC-interaction response of phenol/aromatic ether C-O, alkene C═C/amide C═O → polysaccharides C-O → alcohol/ether/carbohydrate C-O groups. These findings help to elucidate the critical role of DBCs in MP environmental behaviors.


Asunto(s)
Microplásticos , Plásticos , Cloruro de Polivinilo , Lignina , Temperatura , Carbono , Hollín , Éteres , Carbohidratos
6.
Environ Sci Technol ; 57(45): 17501-17510, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37921659

RESUMEN

The mobility of chromium (Cr) is controlled by minerals, especially iron (oxyhydr)oxides. The influence of organic carbon (OC) on the mobility and fate of Cr(VI) during Fe(II)-induced transformation of iron (oxyhydr)oxide, however, is still unclear. We investigate how low-weight carboxyl-rich OC influences the transformation of ferrihydrite (Fh) and controls the mobility of Cr(VI/III) in reducing environments and how Cr influences the formation of secondary Fe minerals and the stabilization of OC. With respect to the transformation of Fe minerals, the presence of low-weight carboxyl-rich OC retards the growth of goethite crystals and stabilizes lepidocrocite for a longer time. With respect to the mobility of Cr, low-weight carboxyl-rich OC suppresses the Cr(III)non-extractable associated with Fe minerals, and this suppression is enhanced with increasing carboxyl-richness of OC and decreasing pH. The presence of Cr(III) mitigates the decrease in total C associated with Fe minerals and increases the Cnon-extractable especially for Fh organominerals made with carboxyl-rich OC. Our study sheds new light on the mobility and fate of Cr in reducing environments and suggests that there is a potential synergy between Cr(VI) remediation and OC stabilization.


Asunto(s)
Carbono , Minerales , Oxidación-Reducción , Minerales/química , Compuestos Férricos/química , Cromo/química , Hierro/química , Óxidos , Compuestos Ferrosos
7.
Environ Res ; 231(Pt 2): 116131, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37209984

RESUMEN

The soil organic carbon stock (SOCS) is considered as one of the largest carbon reservoirs in terrestrial ecosystems, and small changes in soil can cause significant changes in atmospheric CO2 concentration. Understanding organic carbon accumulation in soils is crucial if China is to meet its dual carbon target. In this study, the soil organic carbon density (SOCD) in China was digitally mapped using an ensemble machine learning (ML) model. First, based on SOCD data obtained at depths of 0-20 cm from 4356 sampling points (15 environmental covariates), we compared the performance of four ML models, namely random forest (RF), extreme gradient boosting (XGBoost), support vector machine (SVM), and artificial neural network (ANN) models, in terms of coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE) values. Then, we ensembled four models using Voting Regressor and the principle of stacking. The results showed that ensemble model (EM) accuracy was high (RMSE = 1.29, R2 = 0.85, MAE = 0.81), so that it could be a good choice for future research. Finally, the EM was used to predict the spatial distribution of SOCD in China, which ranged from 0.63 to 13.79 kg C/m2 (average = 4.09 (±1.90) kg C/m2). The SOC storage amount in surface soil (0-20 cm) was 39.40 Pg C. This study developed a novel, ensemble ML model for SOC prediction, and improved our understanding of the spatial distribution of SOC in China.


Asunto(s)
Ecosistema , Suelo , Carbono/análisis , Monitoreo del Ambiente/métodos , China
8.
Environ Res ; 216(Pt 2): 114519, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36252833

RESUMEN

Soil attributes and their environmental drivers exhibit different patterns in different geographical directions, along with distinct regional characteristics, which may have important effects on substance migration and transformation such as organic matter and soil elements or the environmental impacts of pollutants. Therefore, regional soil characteristics should be considered in the process of regionalization for environmental management. However, no comprehensive evaluation or systematic classification of the natural soil environment has been established for China. Here, we established an index system for natural soil environmental regionalization (NSER) by combining literature data obtained based on bibliometrics with the analytic hierarchy process (AHP). Based on the index system, we collected spatial distribution data for 14 indexes at the national scale. In addition, three clustering algorithms-self-organizing feature mapping (SOFM), fuzzy c-means (FCM) and k-means (KM)-were used to classify and define the natural soil environment. We imported four cluster validity indexes (CVI) to evaluate different models: Davies-Bouldin index (DB), Silhouette index (Sil) and Calinski-Harabasz index (CH) for FCM and KM, clustering quality index (CQI) for SOFM. Analysis and comparison of the results showed that when the number of clusters was 13, the FCM clustering algorithm achieved the optimal clustering results (DB = 1.16, Sil = 0.78, CH = 6.77 × 106), allowing the natural soil environment of China to be divided into 12 regions with distinct characteristics. Our study provides a set of comprehensive scientific research methods for regionalization research based on spatial data, it has important reference value for improving soil environmental management based on local conditions in China.


Asunto(s)
Algoritmos , Suelo , Análisis por Conglomerados , Geografía , China , Lógica Difusa
9.
J Environ Manage ; 344: 118397, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37331313

RESUMEN

Wastewater treatment plants (WWTPs) in China must be upgraded to meet new discharge standards, but this incurs both economic and environmental costs and benefits. To select the optimal upgrade pathway, we developed ten upgrade paths based on two common decision-making scenarios for WWTP upgrade in developing countries. Using model simulation, life-cycle assessment, life-cycle cost, and multiple-attribute decision-making, we incorporated the full costs and benefits associated with the construction and operation into the decision-making process. We used a weighting scheme of attributes for the three regions and ranked the upgrade paths using the technique for order preference by similarity to an ideal solution (TOPSIS). The results showed that constructed wetlands and sand filtration were advantageous in terms of lower economic costs and environmental impacts, while the denitrification filter pathways required less land. Optimal pathways differed by region, highlighting the importance of a detailed and integrated assessment of the costs and benefits of WWTP upgrade options over the full life cycle. Our findings can inform decision-making on upgrading China's WWTPs to meet stringent discharge standards and protect inland water and coastal environments.


Asunto(s)
Aguas Residuales , Purificación del Agua , Calidad del Agua , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos , China
10.
J Environ Manage ; 334: 117501, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36801696

RESUMEN

In 2011, China invested US$9.8 billion to combat the severe heavy metal pollution in the Xiang River basin (XRB), aiming to reduce 50% of the 2008 industrial metal emissions by 2015. However, river pollution mitigation requires a holistic accounting of both point and diffuse sources, yet the detailed land-to-river metal fluxes in the XRB remain unclear. Here, by combining emissions inventories with the SWAT-HM model, we quantified the land-to-river cadmium (Cd) fluxes and riverine Cd loads across the XRB from 2000 to 2015. The model was validated against long-term historical observations of monthly streamflow and sediment load and Cd concentrations at 42, 11, and 10 gauges, respectively. The analysis of the simulation results showed that the soil erosion flux dominated the Cd exports (23.56-80.14 Mg yr-1). The industrial point flux decreased by 85.5% from 20.84 Mg in 2000 to 3.02 Mg in 2015. Of all the Cd inputs, approximately 54.9% (37.40 Mg yr-1) was finally drained into Dongting Lake; the remaining 45.1% (30.79 Mg yr-1) was deposited within the XRB, increasing the Cd concentration in riverbed sediment. Furthermore, in XRB's 5-order river network, the Cd concentrations in small streams (1st order and 2nd order) showed larger variability due to their low dilution capacity and intense Cd inputs. Our findings highlight the need for multi-path transport modeling to guide future management strategies and better monitoring schemes to restore the small polluted streams.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Cadmio , Monitoreo del Ambiente , Ríos , Metales Pesados/análisis , Simulación por Computador , China , Contaminantes Químicos del Agua/análisis
11.
Environ Sci Technol ; 56(19): 13595-13606, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36102145

RESUMEN

Evolution of gaseous contaminants from biomass pyrolysis has drawn increasing attention. However, the thermal degradation, dynamics, and synergetic evolution mechanisms during real-time biomass pyrolysis remain unclear. Herein, a novel method using thermogravimetry-Fourier transform infrared spectrometry-gas chromatography/mass spectrometry (TG-FTIR-GC/MS) combined with thermal kinetics and two-dimensional correlation spectroscopy was proposed to explore the chemical properties and temperature response mechanisms of gaseous species released during Phragmites communis (PC) and Typha angustifolia (TA) pyrolysis. The thermal degradation mechanisms of PC/TA pyrolysis were mainly associated with the sigmoidal rate and random nucleation mechanisms. The formation intensities of alcohols/ethers, phenols/esters, acids, aldehydes, and ketones were higher during low-temperature TA pyrolysis and high-temperature PC pyrolysis. The average carbon oxidation state (OS¯C) of gaseous species mainly ranged from -1.5 to -0.5, and the OS¯C slope of most gaseous species was greater than -2.0, which was related to the reduction of aldehyde/ketone groups. Two-dimensional (2D)-TG-FTIR-COS analysis revealed that the sequential temperature response of gaseous species followed: acids → phenols, esters → aldehydes → hydrocarbons → alcohols, ethers → aromatics during PC/TA pyrolysis. The establishment of relationships between the sequential response of gases and degraded components provides an important basis for online monitoring/recovery of gaseous contaminants during biomass pyrolysis.


Asunto(s)
Gases , Pirólisis , Alcoholes , Aldehídos , Biomasa , Carbono , Ésteres , Éteres , Cetonas , Cinética , Fenoles , Espectroscopía Infrarroja por Transformada de Fourier , Termogravimetría
12.
Environ Sci Technol ; 56(6): 3780-3790, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35143177

RESUMEN

Anthropogenic pressures can threaten lake and reservoir ecosystems, leading to harmful algal blooms that have become globally widespread. However, patterns of phytoplankton diversity change and community assembly over long-term scales remain unknown. Here, we explore biodiversity patterns in eukaryotic algal (EA) and cyanobacterial (CYA) communities over a century by sequencing DNA preserved in the sediment cores of seven lakes and reservoirs in the North Temperate Zone. Comparisons within lakes revealed temporal algal community homogenization in mesotrophic lakes, eutrophic lakes, and reservoirs over the last century but no systematic losses of α-diversity. Temporal homogenization of EA and CYA communities continued into the modern day probably due to time-lags related to historical legacies, even if lakes go through a eutrophication phase followed by a reoligotrophication phase. Further, algal community assembly in lakes and reservoirs was mediated by both deterministic and stochastic processes, while homogeneous selection played a relatively important role in recent decades due to intensified anthropogenic activities and climate warming. Overall, these results expand our understanding of global change effects on algal community diversity and succession in lakes and reservoirs that exhibit different successional trajectories while also providing a baseline framework to assess their potential responses to future environmental change.


Asunto(s)
Cianobacterias , Lagos , Ecosistema , Eucariontes , Eutrofización , Floraciones de Algas Nocivas , Lagos/microbiología , Nutrientes
13.
Environ Sci Technol ; 56(9): 5409-5420, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35394270

RESUMEN

Volatile organic compound (VOC) emissions from pyrolysis of widely used biomass are expected to increase significantly under the carbon neutrality target. However, the dynamic emissions and evolution mechanism of biomass-VOCs remain unclear, hindered by complex reactions and offline measurements. Here, we propose a novel covariant evolution mechanism to interpret the emission heterogeneities, sequential temperature responses, and evolved correlations of both VOCs and residual functional groups (RFGs) during corn straw (CS), wood pellet (WP), and semibituminous coal (SBC) pyrolysis. An innovative combination of online thermogravimetric-Fourier transform infrared-gas chromatography/mass spectrometry and two dimensional-correlation spectroscopy was applied. The relative percentages of CS/WP-VOCs were higher than those of SBC-VOCs, and most VOCs tended to have relatively small carbon skeletons as the average carbon oxidation state increased. With the temperature increased from low to high during CS/WP pyrolysis, the primary sequential response of VOCs (acids → phenols/esters → alcohols/ethers/aldehydes/ketones → hydrocarbons/aromatics) corresponded to the RFG response (hydroxyl groups → -CH3/-CH2-/-CH groups → aliphatic ethers and conjugated ketones). Compared with the relative regularity for CS/WP responses, the gas-solid products from SBC pyrolysis exhibited complex temperature-dependent responses and high oxidation-induced variability. These insights provide favorable strategies for the online monitoring system to facilitate priority removal of coal and biomass fuels-VOCs.


Asunto(s)
Carbón Mineral , Compuestos Orgánicos Volátiles , Biomasa , Carbono , Éteres/análisis , Cromatografía de Gases y Espectrometría de Masas , Cetonas , Pirólisis , Zea mays
14.
Environ Sci Technol ; 56(7): 4655-4664, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35258974

RESUMEN

Lakes receive and actively process terrestrial dissolved organic matter (DOM) and play an important role in the global carbon cycle. Urbanization results in elevated inputs of nonpoint-source DOM to headwater streams. Retention of water in lakes allows time for alteration and transformation of the chemical composition of DOM by microbes and UV radiation. Yet, it remains unclear how anthropogenic and natural drivers impact the composition and biolability of DOM in non-pristine lakes. We used optical spectroscopy, Fourier transform ion cyclotron mass spectrometry, stable isotopic measurements, and laboratory bioincubations to investigate the chemical composition and biolability of DOM across two large data sets of lakes associated with a large gradient of urbanization in lowland Eastern China, encompassing a total of 99 lakes. We found that increased urban land use, gross domestic products, and population density in the catchment were associated with an elevated trophic level index, higher chlorophyll-a, higher bacterial abundance, and a higher amount of organic carbon with proportionally higher contribution of aliphatic and peptide-like DOM fractions, which can be highly biolabile. Catchment areas, water depth, lake area: catchment area, gross primary productivity, δ18O-H2O, and bacterial abundance, however, had comparatively little linkage with DOM composition and biolability. Urban land use is currently intensifying in many developing countries, and our results anticipate an increase in the level of biolabile aliphatic DOM from nonpoint sources and accelerated carbon cycling in lake ecosystems in such regions.


Asunto(s)
Materia Orgánica Disuelta , Ecosistema , Carbono/análisis , Lagos/química , Ríos
15.
Environ Sci Technol ; 56(22): 16494-16505, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36269179

RESUMEN

Large reservoirs are hotspots for carbon emissions, and the continued input and decomposition of terrestrial dissolved organic matter (DOM) from upstream catchments is an important source of carbon emissions. Rainstorm events can cause a surge in DOM input; however, periodic sampling often fails to fully capture the impact of these discrete rainstorm events on carbon emissions. We conducted a set of frequent observations prior to and following a rainstorm event in a major reservoir Lake Qiandao (China; 580 km2) from June to July 2021 to investigate how rainstorms alter water chemistry and CO2 and CH4 emissions. We found that the mean CO2 efflux (FCO2) (13.2 ± 9.3 mmol m-2 d-1) and CH4 efflux (FCH4) (0.12 ± 0.02 mmol m-2 d-1) in the postrainstorm campaign were significantly higher than those in the prerainstorm campaign (-3.8 ± 3.0 and +0.06 ± 0.02 mmol m-2 d-1, respectively). FCO2 and FCH4 increased with increasing nitrogen and phosphorus levels, elevated DOM absorption (a350), specific UV absorbance SUVA254, and terrestrial humic-like fluorescence. Furthermore, FCO2 and FCH4 decreased with increasing chlorophyll-a (Chl-a), dissolved oxygen (DO), and pH. A five-day laboratory anoxic bioincubation experiment further revealed a depletion of terrestrial-DOM concurrent with increased CO2 and CH4 production. We conclude that rainstorms boost the emission of CO2 and CH4 fueled by the surge and decomposition of fresh terrestrially derived biolabile DOM in this and likely many other reservoir's major inflowing river mouths.


Asunto(s)
Agua Potable , Ríos , Ríos/química , Carbono/análisis , Dióxido de Carbono/análisis , Lagos/química , China
16.
Ecotoxicol Environ Saf ; 242: 113864, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35849904

RESUMEN

An in-depth understanding of the ecological and health risks posed by heavy metals originating from various pollution sources is critical for foresighted soil-quality management. Based on 220 grid samples (2 × 2 km) analyzed for eight heavy metals (Cd, Hg, As, Pb, Cr, Ni, Cu, and Zn) in the Chenshui (CS) watershed of Hunan Province, China, we applied an integrated approach for identifying and apportioning pollution sources of soil heavy metals and exploring their source-specific pollution risks. This approach consists of three sequential steps: (1) source identification by combining the positive matrix factorization model with geostatistical analysis; (2) quantification of ecological, carcinogenic, and non-carcinogenic risks in a source-specific manner; (3) prioritization of sources in a holistic manner, considering both ecological risks and human health risks. Cd (68.0%) and Hg (13.3%) dominated the ecological risk in terms of ecological risk index; As dominated the non-carcinogenic health risk in terms of total hazard index (THI; adults: 84.8%, children: 84.7%) and the carcinogenic health risk in terms of total carcinogenic risk index (TCRI; adults: 69.0%, children: 68.8%). Among three exposure routes, oral ingestion (89.4-95.2%) was the predominant route for both adults and children. Compared with adults (THI = 0.41, TCRI = 7.01E-05), children (THI = 2.81, TCRI = 1.22E-04) had greater non-carcinogenic and carcinogenic risks. Four sources (F1-4) were identified for the CS watershed: atmospheric deposition related to coal-burning and traffic emissions (F1, 18.0%), natural sources from parent materials (F2, 34.3%), non-ferrous mining and smelting industry (F3, 37.9%), and historical arsenic-related activity (F4, 9.8%). The F3 source contributed the largest (45.2%) to the ecological risks, and the F4 source was the predominant contributor to non-carcinogenic (52.4%) and carcinogenic (64.6%) risks. The results highlight the importance of considering legacy As pollution from abandoned industries when developing risk reduction strategies in this region. The proposed methodology for source and risk identification and apportionment formulates the multidimensional concerns of pollution and the various associated risks into a tangible decision-making process to support soil pollution control.


Asunto(s)
Mercurio , Metales Pesados , Contaminantes del Suelo , Adulto , Cadmio/análisis , Niño , China , Monitoreo del Ambiente , Contaminación Ambiental/análisis , Humanos , Mercurio/análisis , Metales Pesados/análisis , Medición de Riesgo , Suelo , Contaminantes del Suelo/análisis
17.
Environ Sci Technol ; 55(2): 994-1003, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33415977

RESUMEN

Constructed wetlands (CWs) are of great socioeconomic significance because they can remove anthropogenic compounds from aquatic environments. However, no information is available about the removal of persistent chlorinated paraffins by CWs. This study investigates the occurrences, fates, and mass balances of short-chain chlorinated paraffins (SCCPs), medium-chain chlorinated paraffins (MCCPs), and long-chain chlorinated paraffins (LCCPs) in a CW ecosystem. MCCPs were the predominant compounds in water, sediments, and plants within the system. The amounts of SCCPs, MCCPs, and LCCPs entering the wetland were 3.3, 6.8, and 3.4 g/day, respectively. Overall removal efficiencies were 51-78%, 76-86%, and 76-91% for SCCPs, MCCPs, and LCCPs, respectively, and the greatest reduction in CPs was observed in the subsurface flow wetland unit. CPs were predominantly adsorbed onto the sediment and bioaccumulated in the plants, and their organic carbon-water partitioning and plant-water accumulation increased as the carbon and chlorine numbers increased. Sediment sorption (12-38%) and degradation (12-50%) contributed the most to the removal of CPs, but bioaccumulation of CPs in plants (3.8-12%) should not be neglected. Wetlands can economically remove large amounts of CPs, but sediment in the wetland systems could be a sink for CP pollutants.


Asunto(s)
Hidrocarburos Clorados , Parafina , China , Ecosistema , Monitoreo del Ambiente , Hidrocarburos Clorados/análisis , Parafina/análisis , Humedales
18.
Environ Sci Technol ; 55(5): 3091-3100, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33397100

RESUMEN

Organophosphate tri- and diesters (tri-OPEs and di-OPEs) were quantified in 63 paired maternal and cord whole blood samples collected in Hubei, China, in which tri-o-cresyl phosphate (ToCP) was predominant. The transplacental transfer efficiencies (expressed as cord blood to maternal blood (C:M) concentration ratios) of aryl-tri-OPEs, such as ToCP (1.61) and triphenyl phosphate (TPHP) (1.06), were higher than those of alkyl-tri-OPEs (0.66-0.76). For the target tri-OPEs and some traditional organic compounds, the C:M ratios first increased with log Kow in the range of 1.63-5.23 and then decreased, showing a parabolic relationship. However, ToCP, with a log Kow of 6.34, deviated from this relationship and displayed the highest C:M ratio (1.61). Molecular docking indicated a very strong binding affinity between ToCP and transthyretin, suggesting that ToCP might be actively transported by transthyretin in the placenta. The di-OPE levels in the blood samples were significantly lower than the corresponding tri-OPE levels, and those in the cord blood were influenced not only by their transplacental behaviors but also by their low excretion rates and the metabolic characteristics of their parent compounds in the fetus. This study provides useful information for accurately assessing the health risks posed by tri-OPEs to pregnant women and fetuses.


Asunto(s)
Retardadores de Llama , China , Monitoreo del Ambiente , Ésteres , Femenino , Sangre Fetal/química , Retardadores de Llama/análisis , Humanos , Simulación del Acoplamiento Molecular , Organofosfatos , Embarazo
19.
Environ Sci Technol ; 55(17): 11624-11636, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34197711

RESUMEN

Biochar-derived dissolved black carbon (DBC) varies in chemical composition and significantly affects the environmental fate of metal ions. However, the intrinsic molecular composition of DBC fractions and their molecular interaction mechanisms with metal ions remain unclear. We propose a novel, molecular-level covariant binding mechanism to comparatively interpret the heterogeneities, active sites, and sequential responses of copper binding with molecular compounds in DBC and natural dissolved organic matter (DOM). Relatively large proportions of lipid/aliphatic/peptide-like compounds with low mass distributions and lignin-like compounds with oxidized/unsaturated groups existed in acidic- and alkaline-extracted DBC, respectively. A larger percentage of tannin-like/condensed aromatic compounds and higher average conditional stability constants (logK̅Cu) of visible fluorescent components were found for DOM than for DBC. Overall, 200-320 Da and 320-480 Da molecular components contributed significantly to the logK̅Cu values of UVA and visible fluorescent components, respectively, in DBC/DOM. Nitrogenous groups likely exhibited stronger binding affinities than phenolic/carboxylic groups. The sequential copper-binding responses of molecular compounds in DBC/DOM generally followed the order lipid/aliphatic/peptide-like compounds → tannin-like compounds → condensed aromatic compounds. These insights will improve the prediction of the potential effects of DBC on various contaminants and the risks of biochar application to ecosystems.


Asunto(s)
Cobre , Ecosistema , Carbón Orgánico , Hollín
20.
Environ Sci Technol ; 55(5): 3408-3418, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33587626

RESUMEN

Cyanobacterial blooms that form in response to climate warming and nutrient enrichment in freshwater lakes have become a global environmental challenge. Historical legacy effects and the mechanisms underlying cyanobacterial community succession are not well understood, especially for plateau lakes that are important global freshwater resources. This study investigated the temporal dynamics of cyanobacterial communities over centuries in response to nutrient enrichment and climate warming in low-latitude plateau lakes using high-throughput DNA sequencing of sedimentary DNA combined with traditional paleolimnological analyses. Our results confirmed that nutrients and climate warming drive shifts in cyanobacterial communities over time. Cyanobacterial community turnover was pronounced with regime shifts toward new ecological states, occurring after exceeding a tipping point of aquatic total phosphorus (TP). The inferred species interactions, niche differentiation, and identity of keystone taxa significantly changed after crossing the aquatic TP ecological threshold, as demonstrated by network analysis of cyanobacterial taxa. Further, the contribution of aquatic TP to cyanobacterial community dynamics was greater than that of air temperature when lakes were in an oligotrophic state. In contrast, as the aquatic TP threshold was exceeded, the contribution to community dynamics by air temperature increased and potentially surpassed that of aquatic TP. Overall, these results provide new evidence for how past nutrient levels in lacustrine ecosystems influence contemporary cyanobacterial community responses to global warming in low-latitude plateau lakes.


Asunto(s)
Cianobacterias , Lagos , Clima , Ecosistema , Nutrientes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA