Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
RSC Adv ; 11(24): 14746-14754, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35423964

RESUMEN

Antibiotic addition and chlorination are two common processes in fishery culture. Antibiotic residues not only pollute aquaculture water, but are also one of the potential precursors of disinfection by-products (DBPs) during chlorination. The degradation kinetics, products identification and reaction mechanism of sulfacetamide (SFA), a new sulfonamides antibiotics, and potential formation of haloacetic acids (HAAs) in chlorination were explored. The results showed that the degradation of SFA followed pseudo first-order kinetic model, and chlorinating agent dose, pH of water, water temperature, NH4 +, HCO3 - and humic acid (HA) had various effects on the degradation of SFA and the yields of HAAs. The presence of Br- accelerated both the degradation rate of SFA and more formation of Br-DBPs. Through the identification of intermediate products, we proposed the transformation pathway of SFA during the chlorination disinfection process. Namely, in this NaClO disinfection system, the C-S bond between the sulfonyl group and benzene ring, and S-N bond between sulfonyl and acylamino of SFA were broken, and then the primary formed groups were further oxidized to produce intermediates, such as chloroanilines and chlorophenols. And then chlorophenols were subsequently chlorinated to form toxic HAAs. The present study might be of significance for the evaluation of effective degradation of SFA and potential production of halogenate-DBPs (H-DBPs) during the chlorination disinfection process in aquaculture water.

2.
Nanomaterials (Basel) ; 9(11)2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31689957

RESUMEN

Novel 3D flower-like Ag/AgCl/BiOCOOH ternary heterojunction photocatalysts were fabricated by the solvothermal and in-situ precipitation methods, followed by light reduction treatment. The Ag/AgCl nanoparticles were homogeneously distributed on 3D BiOCOOH microspheres. These obtained catalysts were characterized by XRD, SEM, TEM, diffuse reflectance spectra (DRS), and photoluminescence (PL). As expected, they exhibited extraordinary photocatalytic capabilities for the elimination of rhodamine B (RhB) and ciprofloxacin (CIP) under simulated sunlight, the results revealed that the Ag/AgCl/BiOCH-3 with 20 wt.% of Ag/AgCl possessed the maximum activity, and the rate constant for the RhB degradation reached up to 0.1353 min-1, which was about 16.5 or 12.2 times that of bare BiOCOOH or Ag/AgCl. The PL characterization further verified that Ag/AgCl/BiOCOOH heterojunctions were endowed with the effective separation of photogenerated carriers. The excellent photocatalytic ability of Ag/AgCl/BiOCOOH could be credited to the synergistic interactions between Ag/AgCl and BiOCOOH, which not only substantially widened the light absorption, but also evidently hindered the charge recombination. The trapping experiments revealed that the dominant reactive species in RhB removal were h+, •OH, and •O2- species. In addition, Ag/AgCl/BiOCOOH was quite stable and easily recyclable after multiple cycles. The above results imply that the 3D flower-like Ag/AgCl/BiOCOOH ternary heterojunction photocatalyst holds promising prospects in treating industrial wastewater.

3.
Biosens Bioelectron ; 46: 150-4, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23542084

RESUMEN

In this study a new and fast procedure was developed to determine trace 17ß-estradiol (E2) concentrations using CdSe quantum dots (QDs) conjugation with bovine serum albumin (BSA)-E2. To increase the high efficiency of the method, the immunoassay design was restricted to an indirect competitive format. The E2 antigen and bioconjugate were incubated in a microtiter plate with an anti-E2 antibody and competition for antibody binding sites was established. The in situ bismuth-coated carbon electrodes were used for detecting the cadmium ions (Cd(2+)) released during the acid dissolution step. After optimization, the well-defined sharp anodic stripping voltammograms curves of the E2 concentration ranging from 50 to 1000 pg/mL was recorded, and the lowest detection limit was 50 pg/mL with 6% reproducibility and 7% repeatability. Finally, the assay was applied to tap water and wastewater samples. The detection limits were 52.56 ± 0.125 pg/mL for tap water and 51.42 ± 0.453 pg/mL for wastewater. These results show that the assay exhibited sensitive analytical performance in E2 detection with high sensitivity and accuracy with satisfactory results.


Asunto(s)
Compuestos de Cadmio/química , Técnicas Electroquímicas/métodos , Estradiol/análisis , Inmunoensayo/métodos , Puntos Cuánticos , Compuestos de Selenio/química , Albúmina Sérica Bovina/química , Animales , Bismuto/química , Bovinos , Electrodos , Límite de Detección , Aguas Residuales/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA