Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Small ; 20(12): e2307637, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37946399

RESUMEN

The electrochemical conversion of carbon dioxide (CO2) into ethanol with high added value has attracted increasing attention. Here, an efficient catalyst with abundant Cu2O/Ag interfaces for ethanol production under pulsed CO2 electrolysis is reported, which is composed of Cu2O hollow nanospheres loaded with Ag nanoparticles (named as se-Cu2O/Ag). The CO2-to-ethanol Faradaic efficiency is prominently improved to 46.3% at a partial current density up to 417 mA cm-2 under pulsed electrolysis conditions in a neutral flow cell, notably outperforming conventional Cu catalysts during static electrolysis. In situ spectroscopy reveals the stabilized Cu+ species of se-Cu2O/Ag during pulsed electrolysis and the enhanced adsorbed CO intermediate (*CO)coverage on the heterostructured catalyst. Density functional theory (DFT) calculations further confirm that the Cu2O/Ag heterostructure stabilizes the *CO intermediate and promotes the coupling of *CO and adsorbed CH intermediate (*CH). Meanwhile, the stable Cu+ species under pulsed electrolysis favor the hydrogenation of adsorbed HCCOH intermediate (*HCCOH) to adsorbed HCCHOH intermediate (*HCCHOH) on the pathway to ethanol. The synergistic effect between the enhanced generation of *CO on Cu2O/Ag and regenerated Cu+ species under pulsed electrolysis steers the reaction pathway toward ethanol. This work provides some insights into selective ethanol production from CO2 electroreduction via combined catalyst design and non-steady state electrolysis.

2.
Small ; 20(32): e2311741, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38470196

RESUMEN

Hydrogen (H2) has emerged as a highly promising energy carrier owing to its remarkable energy density and carbon emission-free properties. However, the widespread application of H2 fuel has been limited by the difficulty of storage. In this work, spontaneous electrochemical hydrogen production is demonstrated using hydrazine (N2H4) as a liquid hydrogen storage medium and enabled by a highly active Co catalyst for hydrazine electrooxidation reaction (HzOR). The HzOR electrocatalyst is developed by a self-limited growth of Co nanoparticles from a Co-based zeolitic imidazolate framework (ZIF), exhibiting abundant defective surface atoms as active sites for HzOR. Notably, these self-limited Co nanoparticles exhibit remarkable HzOR activity with a negative working potential of -0.1 V (at 10 mA cm-2) in 0.1 m N2H4/1 m KOH electrolyte. Density functional theory (DFT) calculations are employed to validate the superior performance of low-coordinated Co active sites in facilitating HzOR. By taking advantage of the potential difference between HzOR and the hydrogen evolution reaction (HER), a novel HzOR||HER electrochemical system is developed to spontaneously produce H2 without external energy input. Overall, the work offers valuable guidance for developing active HzOR catalyst. The novel HzOR||HER electrochemical system represents a promising and innovative solution for energy-efficient hydrogen production.

3.
J Am Chem Soc ; 145(48): 26213-26221, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37944031

RESUMEN

Electrochemically converting CO2 into specified high-value products is critical for carbon neutral economics. However, governing the product distribution of the CO2 electroreduction on Cu-based catalysts remains challenging. Herein, we put forward an anion enrichment strategy to efficiently dictate the route of *CO reduction by a pulsed electrolysis strategy. Upon periodically applying a positive potential on the cathode, the anion concentration in the vicinity of the electrode increases apparently. By adopting KF, KCl, and KHCO3 as electrolytes, the dominant CO2 electroreduction product on commercial Cu foil can be tuned into CO (53% ± 2.5), C2+ (76.6 ± 2.1%), and CH4 (42.6 ± 2.1%) under pulsed electrolysis. Notably, one can delicately tailor the ratios of CO/CH4, CH4/C2+, and C2+/CO by simply changing the composition of the electrolyte. Density functional theory calculations demonstrate that locally enriched anions can affect the key CO2RR intermediates in different ways owing to their specific electronegativity and volume, which leads to the distinct selectivity. The present study highlights the importance of tuning ionic species at the electrode-electrolyte interface for customizing the CO2 electroreduction products.

4.
Small ; 19(16): e2206768, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36683212

RESUMEN

Developing efficient oxygen evolution reaction (OER) electrocatalysts for seawater electrolysis is still a big challenge. Herein, a facile one-pot approach is reported to synthesize RuO2 -incorporated NiFe-metal organic framework (RuO2 /NiFe-MOF) with unique nanobrick-nanosheet heterostructure as precatalyst. Driven by electric field, the RuO2 /NiFe-MOF dynamically reconstructs into RuO2 nanoparticles-anchored NiFe oxy/hydroxide nanosheets (RuO2 /NiFeOOH) with coherent interface, during which the dissolution and redeposition of RuO2 are witnessed. Owing to the synergistic interaction between RuO2 and NiFeOOH, the as-reconstructed RuO2 /NiFeOOH exhibits outstanding alkaline OER activity with an ultralow overpotential of 187.6 mV at 10 mA cm-2 and a small Tafel slope of 31.9 mV dec-1 and excellent durability at high current densities of 840 and 1040 mA cm-2 in 1 m potassium hydroxide (KOH). When evaluated for seawater oxidation, the RuO2 /NiFeOOH only needs a low overpotential of 326.2 mV to achieve 500 mA cm-2 and can continuously catalyze OER at 500 mA cm-2 for 100 h with negligible activity degradation. Density function theory calculations reveal that the presence of strong interaction and enhanced charge transfer along the coherent interface between RuO2 and NiFeOOH ensures improved OER activity and stability.

5.
Small ; 19(39): e2302530, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37259279

RESUMEN

Electrochemical CO2 reduction reaction (CO2 RR) is a promising strategy for waste CO2 utilization and intermittent electricity storage. Herein, it is reported that bimetallic Cu/Pd catalysts with enhanced *CO affinity show a promoted CO2 RR performance for multi-carbon (C2+) production under industry-relevant high current density. Especially, bimetallic Cu/Pd-1% catalyst shows an outstanding CO2 -to-C2+ conversion with 66.2% in Faradaic efficiency (FE) and 463.2 mA cm-2 in partial current density. An increment in the FE ratios of C2+ products to CO  for Cu/Pd-1% catalyst further illuminates a preferable C2+ production. In situ Raman spectra reveal that the atop-bounded CO is dominated by low-frequency band CO on Cu/Pd-1% that leads to C2+ products on bimetallic catalysts, in contrast to the majority of high-frequency band CO on Cu that favors the formation of CO. Density function theory calculation confirms that bimetallic Cu/Pd catalyst enhances the *CO adsorption and reduces the Gibbs free energy of the CC coupling process, thereby favoring the formation of C2+ products.

6.
Small ; 18(43): e2106719, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35182009

RESUMEN

Recycling spent lithium-ion batteries (LIBs) is an urgent task in view of the resource shortage and environmental concerns. Here, a facile ternary molten salt approach is presented for efficiently regenerating the LiNi0.5 Co0.2 Mn0.3 O2 (NCM523) cathode of spent LIBs. Such an approach involves the treatment of spent cathode powder in the ternary molten salt at a moderate temperature (400 °C) and subsequent annealing in oxygen. The Li loss and degraded phases in spent NCM that cause the capacity decay can be fully remedied after the regeneration process. As a result, the regenerated cathode delivers a reversible capacity of 160 mAh g-1 at 0.5 C with retention of 93.7% after 100 cycles and maintains a high capacity of 132 mAh g-1 at a high rate of 5 C. The electrochemical performance of regenerated NCM cathode is compared favorably to the fresh NCM cathode, which demonstrates the feasibility of the molten salt approach to directly regenerate spent NCM cathode.

7.
Nano Lett ; 18(6): 3368-3376, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29708761

RESUMEN

To circumvent the imbalances of electrochemical kinetics and capacity between Li+ storage anodes and capacitive cathodes for lithium-ion capacitors (LICs), we herein demonstrate an efficient solution by boosting the capacitive charge-storage contributions of carbon electrodes to construct a high-performance LIC. Such a strategy is achieved by the in situ and high-level doping of nitrogen atoms into carbon nanospheres (ANCS), which increases the carbon defects and active sites, inducing more rapidly capacitive charge-storage contributions for both Li+ storage anodes and PF6- storage cathodes. High-level nitrogen-doping-induced capacitive enhancement is successfully evidenced by the construction of a symmetric supercapacitor using commercial organic electrolytes. Coupling a pre-lithiated ANCS anode with a fresh ANCS cathode enables a full-carbon LIC with a high operating voltage of 4.5 V and high energy and power densities thereof. The assembled LIC device delivers high energy densities of 206.7 and 115.4 Wh kg-1 at power densities of 0.225 and 22.5 kW kg-1, respectively, as well as an unprecedented high-power cycling stability with only 0.0013% capacitance decay per cycle within 10 000 cycles at a high power output of 9 kW kg-1.

8.
Small ; 14(25): e1800635, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29806226

RESUMEN

Silicon holds great promise as an anode material for lithium-ion batteries with higher energy density; its implication, however, is limited by rapid capacity fading. A catalytic growth of graphene cages on composite particles of magnesium oxide and silicon, which are made by magnesiothermic reduction reaction of silica particles, is reported herein. Catalyzed by the magnesium oxide, graphene cages can be conformally grown onto the composite particles, leading to the formation of hollow graphene-encapsulated Si particles. Such materials exhibit excellent lithium storage properties in terms of high specific capacity, remarkable rate capability (890 mAh g-1 at 5 A g-1 ), and good cycling retention over 200 cycles with consistently high coulombic efficiency at a current density of 1 A g-1 . A full battery test using LiCoO2 as the cathode demonstrates a high energy density of 329 Wh kg-1 .

9.
Acc Chem Res ; 50(2): 293-301, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28128931

RESUMEN

The rational design and synthesis of hollow structured functional materials are of great significance as both fundamental challenges in materials science and practical solutions for efficient energy utilization in modern society. The unique structural features of hollow functional materials bring outstanding electrochemical properties for both energy storage and electrocatalysis. However, conventional templating methods are normally less efficient in constructing hollow structures with desirable compositions and architectures. In the past decade, many novel synthetic approaches directly converting templates into hollow structures have been developed. Collectively termed as the "self-templated" strategy, it makes use of various physical/chemical processes to transform solid templates into hollow structures of target materials. Of particular note is the outstanding capability to construct complex hollow architectures of a wide variety of inorganic or hybrid functional materials, thus providing effective solutions for various electrochemical energy applications. In this Account, we present the recent progress in self-templated formation of hollow structures especially with complex architectures, and their remarkable performance in electrochemical energy-related technologies. These advanced self-templated methods are summarized as three categories. "Selective etching" creates hollow structures from solid templates of same materials by removing some of the internal parts, forming multishelled or unusual hollow architectures. "Outward diffusion" utilizes the relocation of mass in templates from inner region to outer region driven by various mechanisms, to construct hollow structures with multiple or hierarchical shells. "Heterogeneous contraction" typically applies to thermally decomposable templates and generates various hollow structures under nonequilibrium heating conditions. We further demonstrate some remarkable electrochemical properties of such hollow structures in virtue of their exceptional composition-/structure-induced merits. As electrode materials for lithium-ion batteries, hybrid or multishelled metal oxides exhibit high cyclability because of their capability to well accommodate the lithium insertion strain. Also the rate capability is effectively improved by the fast lithium insertion/deinsertion in multishelled or hierarchical hollow structures. These exceptional structural merits also significantly enhance the reaction kinetics and prolong the cycling lifetime of metal-sulfides-based electrodes, which enables the assembly of hybrid supercapacitors with high energy and power densities. On the other hand, multicompositional hollow structures with large exposed surface area and rich open pore channels offer abundant robust active sites and fast charge/mass transport for electrocatalytic reactions. These studies demonstrate that the versatility and superiority of self-templated methods for hollow structured functional materials have greatly promoted their applications for electrochemical energy storage and conversion. With continued research efforts, we are expecting greater and broader impacts brought by the rapidly growing family of hollow structures formed by self-templated methods.

10.
Chemistry ; 24(69): 18293-18306, 2018 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-30221404

RESUMEN

Conventional liquid electrolytes for lithium batteries usually suffer from irreversible decomposition and safety concerns. Solid state electrolytes (SSEs) have been considered as the key for advanced lithium batteries with improved energy density and safety, whereas challenges remain for polymer and inorganic SSEs. Recently, hybrid solid-state electrolytes (HSSEs) that integrate the merits of different electrolyte systems have been under intensive study. Herein, we summarize the recent progress of HSSEs with different compositions and structures. The design principle of each type of HSSEs are discussed, as well as their ionic conducting mechanism, electrochemical performance and effects of compositional/structural control. Finally, challenges and perspectives are provided for the future development of HSSEs and solid-state lithium batteries.

11.
Small ; 11(4): 432-6, 2015 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-25180480

RESUMEN

Carbon-coated NiCo2 O4 @SnO2 core-shell hetero-nanostructures are synthesized by a facile hydrothermal process and subsequent carbon nano-coating. When evaluated as anode materials for lithium-ion batteries, the 3D hetero-nanostructures exhibit enhanced lithium storage properties due to advantageous structural features.

12.
Small ; 11(7): 804-8, 2015 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-25228205

RESUMEN

A high-performance electrode for supercapacitors is designed and synthesized by growing electroactive NiCo2 O4 nanosheets on conductive Ni nanofoam. Because of the structural advantages, the as-prepared Ni@NiCo2 O4 hybrid nanostructure exhibits significantly improved electrochemical performance with high capacitance, excellent rate capability, and good cycling stability.

13.
Angew Chem Int Ed Engl ; 54(18): 5331-5, 2015 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-25702684

RESUMEN

Nanoframe-like hollow structures with unique three-dimensional (3D) open architecture hold great promise for various applications. Current research efforts mainly focus on frame-like noble metals and metal oxides. However, metal sulfides with frame-like nanostructures have been rarely reported. Starting from metal-organic frameworks (MOFs), we demonstrate a novel structure-induced anisotropic chemical etching/anion exchange method to transform Ni-Co Prussian blue analogue (PBA) nanocubes into NiS nanoframes with tunable size. The reaction between Ni-Co PBA nanocube templates and Na2 S in solution leads to the formation of well-defined NiS nanoframes. The different reactivity between the edges and the plane surface of the Ni-Co PBA nanocubes is found to be the key factor for the formation of NiS nanoframes. Benefitting from their structural merits including 3D open structure, small size of primary nanoparticles, high specific surface area, and good structural robustness, the as-derived NiS nanoframes manifest excellent electrochemical performance for electrochemical capacitors and hydrogen evolution reaction in alkaline electrolyte.

14.
Angew Chem Int Ed Engl ; 54(13): 4001-4, 2015 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-25651520

RESUMEN

Hollow structures of rutile TiO2 , and especially with non-spherical shape, have rarely been reported. Herein, high-quality rutile TiO2 submicroboxes have been synthesized by a facile templating method using Fe2 O3 submicrocubes as removable templates. Compared to other rutile TiO2 nanomaterials, the as-prepared rutile TiO2 submicroboxes manifest superior lithium storage properties in terms of high specific capacity, long-term cycling stability, and excellent rate capability.

15.
Angew Chem Int Ed Engl ; 54(12): 3797-801, 2015 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-25630856

RESUMEN

Three-dimensional (3D) Pt-based alloy nanostructures composed of one-dimensional (1D) nanowires/nanorods have recently attracted significant interest as electrocatalysts. In this work, we report an effective solvothermal method for the direct preparation of 3D Pt-Co nanowire assemblies (NWAs) with tunable composition. The composition- and structure-dependent electrocatalytic performance is thoroughly investigated. Because of the bimetallic synergetic effect and unique structural advantage, the as-prepared 3D Pt3Co NWA outperforms commercial Pt/carbon and Pt black catalysts and even 3D Pt NWA. The electrochemical results demonstrate that the 3D Pt3Co NWA is indeed a promising electrocatalyst with enhanced catalytic activity and improved durability for practical electrocatalytic applications.

16.
Angew Chem Int Ed Engl ; 54(51): 15395-9, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26527481

RESUMEN

Production of hydrogen by electrochemical water splitting has been hindered by the high cost of precious metal catalysts, such as Pt, for the hydrogen evolution reaction (HER). In this work, novel hierarchical ß-Mo2 C nanotubes constructed from porous nanosheets have been fabricated and investigated as a high-performance and low-cost electrocatalyst for HER. An unusual template-engaged strategy has been utilized to controllably synthesize Mo-polydopamine nanotubes, which are further converted into hierarchical ß-Mo2 C nanotubes by direct carburization at high temperature. Benefitting from several structural advantages including ultrafine primary nanocrystallites, large exposed surface, fast charge transfer, and unique tubular structure, the as-prepared hierarchical ß-Mo2 C nanotubes exhibit excellent electrocatalytic performance for HER with small overpotential in both acidic and basic conditions, as well as remarkable stability.

17.
Angew Chem Int Ed Engl ; 53(6): 1488-504, 2014 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-24382683

RESUMEN

A promising family of mixed transition-metal oxides (MTMOs) (designated as Ax B3-x O4 ; A, B=Co, Ni, Zn, Mn, Fe, etc.) with stoichiometric or even non-stoichiometric compositions, typically in a spinel structure, has recently attracted increasing research interest worldwide. Benefiting from their remarkable electrochemical properties, these MTMOs will play significant roles for low-cost and environmentally friendly energy storage/conversion technologies. In this Review, we summarize recent research advances in the rational design and efficient synthesis of MTMOs with controlled shapes, sizes, compositions, and micro-/nanostructures, along with their applications as electrode materials for lithium-ion batteries and electrochemical capacitors, and efficient electrocatalysts for the oxygen reduction reaction in metal-air batteries and fuel cells. Some future trends and prospects to further develop advanced MTMOs for next-generation electrochemical energy storage/conversion systems are also presented.

18.
Angew Chem Int Ed Engl ; 53(14): 3711-4, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24590835

RESUMEN

Hollow nanostructures are of great interest for a wide variety of applications. Despite the great advances, synthesis of anisotropic hollow structures is still very challenging. In this work, we have developed a simple sacrificial template method to synthesize uniform Ni(x)Co(3-x)S4 hollow nanoprisms with tunable composition. Tetragonal nanoprisms of nickel-cobalt acetate hydroxide precursors with controllable Ni/Co molar ratios are first synthesized and used as the sacrificial templates. After a sulfidation process with thioacetamide (TAA) in ethanol, the solid precursor prisms can be transformed into the corresponding Ni(x)Co(3-x)S4 hollow nanoprisms with a well-defined hollow interior. The intriguing structural and compositional features are beneficial for electrochemical applications. Impressively, the resultant Ni(x)Co(3-x)S4 hollow prisms manifest a high specific capacitance with enhanced cycling stability, making them potential electrode materials for supercapacitors.

19.
Angew Chem Int Ed Engl ; 53(23): 5917-21, 2014 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-24821565

RESUMEN

Semiconductor heterostructures are of great interest in a wide range of applications. In this work, we design and synthesize a novel heteronanostructure with controlled relative composition, i.e., BiVO4/Bi2S3 hollow discoid-like particles with mesoporous shell. The synthesis involves a facile anion exchange process by reacting pre-synthesized BiVO4 discoid-like particles with Na2S in an aqueous solution. Benefiting from the unique structural features and the formation of heterostructure, the as-prepared BiVO4/Bi2S3 hollow discoids exhibit significantly enhanced photoelectrochemical current response and photocatalytic activity for reduction of Cr(VI) under visible-light illumination.

20.
Angew Chem Int Ed Engl ; 53(47): 12803-7, 2014 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-25251871

RESUMEN

Despite the great advantages of hollow structures as electrodes for lithium-ion batteries, one apparent common drawback which is often criticized is their compromised volumetric energy density due to the introduced hollow interior. Here, we design and synthesize bowl-like SnO2 @carbon hollow particles to reduce the excessive hollow interior space while retaining the general advantages of hollow structures. As a result, the tap density can be increased about 30 %. The as-prepared bowl-like SnO2 @carbon hollow particles with conformal carbon support exhibit excellent lithium storage properties in terms of high capacity, stable cyclability and excellent rate capability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA