Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Drug Resist Updat ; 73: 101055, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38387281

RESUMEN

Tumor-associated macrophages (TAMs) are often associated with chemoresistance and resultant poor clinical outcome in solid tumors. Here, we demonstrated that TAMs-released chemokine-C-C motif chemokine 22 (CCL22) in esophageal squamous cell carcinoma (ESCC) stroma was tightly correlated with the chemoresistance of ESCC patients. TAMs-secreted CCL22 was able to block the growth inhibitory and apoptosis-promoting effects of cisplatin on ESCC cells. Mechanistically, CCL22 stimulated intratumoral diacylglycerol kinase α (DGKα) to produce phosphatidic acid (PA), which suppressed the activity of NADPH oxidase 4 (NOX4) and then blocked the overproduction of intratumoral reactive species oxygen (ROS) induced by cisplatin. CCL22 activated DGKα/nuclear factor-κB (NF-κB) axis to upregulate the level of several members of ATP binding cassette (ABC) transporter superfamily, including ABC sub-family G member 4 (ABCG4), ABC sub-family A member 3 (ABCA3), and ABC sub-family A member 5 (ABCA5), to lower the intratumoral concentration of cisplatin. Consequently, these processes induced the cisplatin resistance in ESCC cells. In xenografted models, targeting DGKα with 5'-cholesterol-conjugated small-interfering (si) RNA enhanced the chemosensitivity of cisplatin in ESCC treatment, especially in the context of TAMs. Our data establish the correlation between the TAMs-induced intratumoral metabolic product/ROS axis and chemotherapy efficacy in ESCC treatment and reveal relevant molecular mechanisms.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/patología , Cisplatino/farmacología , Cisplatino/uso terapéutico , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Diacilglicerol Quinasa/genética , Diacilglicerol Quinasa/farmacología , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Macrófagos Asociados a Tumores , NADPH Oxidasa 4/genética , Especies Reactivas de Oxígeno , ARN Interferente Pequeño/genética , Proliferación Celular , Quimiocinas/farmacología , Quimiocinas/uso terapéutico , Línea Celular Tumoral , Quimiocina CCL22/farmacología , Quimiocina CCL22/uso terapéutico
2.
Cell Commun Signal ; 22(1): 283, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783346

RESUMEN

BACKGROUND: In addition to functioning as a precise monitoring mechanism in cell cycle, the anaphase-promoting complex/cyclosome (APC/C) is reported to be involved in regulating multiple metabolic processes by facilitating the ubiquitin-mediated degradation of key enzymes. Fatty acid oxidation is a metabolic pathway utilized by tumor cells that is crucial for malignant progression; however, its association with APC/C remains to be explored. METHODS: Cell cycle synchronization, immunoblotting, and propidium iodide staining were performed to investigate the carnitine palmitoyltransferase 1 C (CPT1C) expression manner. Proximity ligation assay and co-immunoprecipitation were performed to detect interactions between CPT1C and APC/C. Flow cytometry, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2 H-tetrazolium, inner salt (MTS) assays, cell-scratch assays, and transwell assays and xenograft transplantation assays were performed to investigate the role of CPT1C in tumor progression in vitro and in vivo. Immunohistochemistry was performed on tumor tissue microarray to evaluate the expression levels of CPT1C and explore its potential clinical value. RESULTS: We identified CPT1C as a novel APC/C substrate. CPT1C protein levels exhibited cell cycle-dependent fluctuations, peaking at the G1/S boundary. Elevated CPT1C accelerated the G1/S transition, facilitating tumor cell proliferation in vitro and in vivo. Furthermore, CPT1C enhanced fatty acid utilization, upregulated ATP levels, and decreased reactive oxygen species levels, thereby favoring cell survival in a harsh metabolic environment. Clinically, high CPT1C expression correlated with poor survival in patients with esophageal squamous cell carcinoma. CONCLUSIONS: Overall, our results revealed a novel interplay between fatty acid utilization and cell cycle machinery in tumor cells. Additionally, CPT1C promoted tumor cell proliferation and survival by augmenting cellular ATP levels and preserving redox homeostasis, particularly under metabolic stress. Therefore, CPT1C could be an independent prognostic indicator in esophageal squamous cell carcinoma.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase , Carnitina O-Palmitoiltransferasa , Carnitina O-Palmitoiltransferasa/metabolismo , Carnitina O-Palmitoiltransferasa/genética , Humanos , Animales , Línea Celular Tumoral , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Ciclosoma-Complejo Promotor de la Anafase/genética , Metabolismo Energético/genética , Regulación hacia Arriba , Progresión de la Enfermedad , Proliferación Celular , Ratones Desnudos , Ratones , Femenino , Masculino , Fase S , Ratones Endogámicos BALB C
3.
Org Biomol Chem ; 22(5): 998-1009, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38186088

RESUMEN

An efficient Ru(II)-catalyzed C-H activation-based spiroannulation of benzoxazines with the easily available benzoquinone and N-sulfonyl quinone monoimine has been realized, providing a straightforward strategy to access NH-containing spiropyrans in moderate to good yields with good functional group compatibility. The procedure features atom- and step-economy, mild conditions, and excellent chemoselectivity. Moreover, a catalytically competent five-membered cycloruthenated complex has been isolated.

4.
Carcinogenesis ; 44(6): 451-462, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37279554

RESUMEN

Epidermal growth factor receptor (EGFR) is one of the most common amplified and overexpressed oncogenes in esophageal squamous cell carcinoma (ESCC), while the clinical efficacy of EGFR-targeted therapy in ESCC is dismal. Here, we evaluated the efficacy of dual blockage using monoclonal antibody against EGFR (Nimotuzumab) and an Wee1 inhibitor (AZD1775) in ESCC. We found that the mRNA and protein expression of EGFR and Wee1 were positively correlated in ESCC. Nimotuzumab-AZD1775 co-treatment inhibited tumor growth in PDX models with different drug susceptibility. Transcriptome sequencing and mass spectrometry analysis indicated that higher sensitive models showed enrichment of the PI3K/Akt or MAPK signaling pathway in Nimotuzumab-AZD1775 group compared with control group. In vitro experiments showed that the combination further inhibit PI3K/Akt and MAPK pathways compared to their monotherapy as indicated by downregulation of pAKT, pS6, pMEK, pErk and p-p38 MAPK. Furthermore, AZD1775 potentiated Nimotuzumab's antitumor effect through inducing apoptosis. Meanwhile, the bioinformatics analysis suggests the POLR2A might be candidate molecule of EGFR/Wee1 downstream. In conclusion, our work uncovers that EGFR-mAb Nimotuzumab combined with Wee1 inhibitor AZD1775 elicited potentiated anticancer activity against ESCC cell line and PDXs partially through PI3K/Akt and MAPK pathways blockade. These preclinical data raise the promising that ESCC patients may benefit from dual target EGFR and Wee1.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/metabolismo , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Proteínas Proto-Oncogénicas c-akt/uso terapéutico , Fosfatidilinositol 3-Quinasas , Receptores ErbB/genética , Receptores ErbB/metabolismo , Línea Celular Tumoral , Proliferación Celular , Apoptosis
5.
Chin J Cancer Res ; 35(2): 176-190, 2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37180834

RESUMEN

Objective: Ferroptosis is a novel cell death process which displays a promising role in cancer treatment. However, clinically available drugs targeting ferroptosis are rarely used, and yet there are no studies reporting on inducing ferroptosis via Chinese herbal extracts. Here we explored the tumor inhibition effects of Ganoderma lucidum (G. lucidum) on oral squamous cell carcinoma (OSCC). Specifically, we aimed to clarify the biological mechanism of components in the dietary, aqueous-soluble sporoderm-removed G. lucidum spore powder (A-GSP). Methods: Preliminary transcriptome analysis revealed the significant enrichment of the ferroptosis pathway. Cellular Fe2+, glutathione (GSH), malondialdehyde (MDA), reactive oxygen species (ROS) and lipid peroxide levels were measured to identify ferroptosis occurrence. Western blotting was used to measure ferroptosis-related proteins. Changes in mitochondria morphology and function were observed with transmission electron microscopy (TEM) and ATP detection assays. Ferroptosis inhibitor ferrostatin-1 was then used to verify the anti-tumor effects of A-GSP. Finally, nude mice xenograft models of oral cancer confirmed that A-GSP inhibited tumor growth. Results: A-GSP promoted ferroptosis in oral cancer cells by inducing Fe2+ influx, GSH depletion, as well as lipid peroxide and ROS accumulation. Ferroptosis-related proteins exhibited corresponding changes, particularly Acyl-coA synthetase long chain family member 4 (ACSL4) increase and glutathione peroxidase 4 (GPX4) decrease. A-GSP considerably lowered mitochondrial volume and ridge number, while significantly decreasing ATP production. Ferrostatin-1 reversed all of these A-GSP-induced changes. In vivo, A-GSP exerted a ferroptosis-mediated tumor-suppressing effect without observable adverse reactions. Conclusions: Our findings demonstrate the therapeutic potential of A-GSP for treating patients with OSCC by targeting ferroptosis.

6.
Acta Oncol ; 59(8): 933-939, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32568616

RESUMEN

Background: Efficient and accurate methods are needed to automatically segmenting organs-at-risk (OAR) to accelerate the radiotherapy workflow and decrease the treatment wait time. We developed and evaluated the use of a fused model Dense V-Network for its ability to accurately segment pelvic OAR.Material and methods: We combined two network models, Dense Net and V-Net, to establish the Dense V-Network algorithm. For the training model, we adopted 100 kV computed tomography (CT) images of patients with cervical cancer, including 80 randomly selected as training sets, by which to adjust parameters of the automatic segmentation model, and the remaining 20 as test sets to evaluate the performance of the convolutional neural network model. Three representative parameters were used to evaluate the segmentation results quantitatively.Results: Clinical results revealed that Dice similarity coefficient values of the bladder, small intestine, rectum, femoral head and spinal cord were all above 0.87 mm; and Jaccard distance was within 2.3 mm. Except for the small intestine, the Hausdorff distance of other organs was less than 9.0 mm. Comparison of our approaches with those of the Atlas and other studies demonstrated that the Dense V-Network had more accurate and efficient performance and faster speed.Conclusions: The Dense V-Network algorithm can be used to automatically segment pelvic OARs accurately and efficiently, while shortening patients' waiting time and accelerating radiotherapy workflow.


Asunto(s)
Redes Neurales de la Computación , Órganos en Riesgo/diagnóstico por imagen , Pelvis/diagnóstico por imagen , Neoplasias del Cuello Uterino/diagnóstico por imagen , Flujo de Trabajo , Algoritmos , Aprendizaje Profundo , Femenino , Fémur/diagnóstico por imagen , Humanos , Intestinos/diagnóstico por imagen , Recto/diagnóstico por imagen , Médula Espinal/diagnóstico por imagen , Tiempo de Tratamiento , Vejiga Urinaria/diagnóstico por imagen , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/cirugía
7.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 37(2): 311-316, 2020 Apr 25.
Artículo en Zh | MEDLINE | ID: mdl-32329284

RESUMEN

When applying deep learning to the automatic segmentation of organs at risk in medical images, we combine two network models of Dense Net and V-Net to develop a Dense V-network for automatic segmentation of three-dimensional computed tomography (CT) images, in order to solve the problems of degradation and gradient disappearance of three-dimensional convolutional neural networks optimization as training samples are insufficient. This algorithm is applied to the delineation of pelvic endangered organs and we take three representative evaluation parameters to quantitatively evaluate the segmentation effect. The clinical result showed that the Dice similarity coefficient values of the bladder, small intestine, rectum, femoral head and spinal cord were all above 0.87 (average was 0.9); Jaccard distance of these were within 2.3 (average was 0.18). Except for the small intestine, the Hausdorff distance of other organs were less than 0.9 cm (average was 0.62 cm). The Dense V-Network has been proven to achieve the accurate segmentation of pelvic endangered organs.


Asunto(s)
Redes Neurales de la Computación , Órganos en Riesgo , Pelvis , Algoritmos , Humanos , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Tomografía Computarizada por Rayos X
8.
Inorg Chem ; 58(12): 7915-7924, 2019 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-31148454

RESUMEN

A well-structured anode nanomaterial, which can ensure electron and ion transport and avoid excessive pulverization, is of crucial importance to achieve high capacity with superior cycling stability for both sodium- and lithium-ion batteries (SIBs and LIBs). For the purpose of a superior rate performance, this work here has designed and successfully synthesized a new Na+/Li+ storage nanomaterial of SCS/Sn2Fe@GO through loading of a Sn2Fe nanoalloy on sea-sponge-like carbon spheres (SCSs), followed by a graphene oxide (GO) wrapping process. In such a designed composite, the SCS skeleton ensures electronic conductivity and shorts Na+ and Li+ diffusion pathways, while the Sn2Fe nanoalloy delivers a high capacity and prevents excessive pulverization. The GO shell around SCS/Sn2Fe greatly enhances the cyclability. Used as an anode, the SCS/Sn2Fe@GO nanocomposite enables a high capacity up to 660 mAh g-1 at 50 mA g-1, which is maintained without decay up to 800 cycles in SIBs, and up to 850 mAh g-1 at 500 mA g-1 after 3500 cycles in LIBs, proving its applicability in new-generation SIBs and LIBs.

9.
Mol Cancer ; 17(1): 125, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30131072

RESUMEN

BACKGROUND: The prognosis for esophageal squamous cell carcinoma (ESCC) patients with lymph node metastasis (LNM) is still dismal. Elucidation of the LNM associated genomic alteration and underlying molecular mechanisms may provide clinical therapeutic strategies for ESCC treatment. METHODS: Joint analysis of ESCC sequencing data were conducted to comprehensively survey SCNAs and identify driver genes which significantly associated with LNM. The roles of miR-548k in lymphangiogensis and lymphatic metastasis were validated both in vitro and in vivo. ESCC tissue and blood samples were analyzed for association between miR-548k expression and patient clinicopathological features and prognosis and diagnosis. RESULTS: In the pooled cohort of 314 ESCC patients, we found 76 significant focused regions including 43 amplifications and 33 deletions. Clinical implication analysis revealed a panel of genes associated with LNM with the most frequently amplified gene being MIR548K harbored in the 11q13.3 amplicon. Overexpression of miR-548k remarkably promotes lymphangiogenesis and lymphatic metastasis in vitro and in vivo. Furthermore, we demonstrated that miR-548k modulating the tumor microenvironment by promoting VEGFC secretion and stimulating lymphangiogenesis through ADAMTS1/VEGFC/VEGFR3 pathways, while promoting metastasis by regulating KLF10/EGFR axis. Importantly, we found that serum miR-548k and VEGFC of early stage ESCC patients were significantly higher than that in healthy donators, suggesting a promising application of miR-548k and VEGFC as biomarkers in early diagnosis of ESCC. CONCLUSIONS: Our study comprehensively characterized SCNAs in ESCC and highlighted the crucial role of miR-548k in promoting lymphatic metastasis, which might be employed as a new diagnostic and prognostic marker for ESCC.


Asunto(s)
Cromosomas Humanos Par 11/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas de Esófago/patología , Amplificación de Genes , Metástasis Linfática/genética , MicroARNs/genética , Animales , Línea Celular Tumoral , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/metabolismo , Femenino , Humanos , Masculino , Ratones , Trasplante de Neoplasias , Pronóstico , Análisis de Secuencia de ARN , Microambiente Tumoral , Factor C de Crecimiento Endotelial Vascular/metabolismo
10.
RSC Adv ; 14(2): 1472-1487, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38174261

RESUMEN

Metal ion-nanocluster coordination complexes can produce a variety of functional engineered nanomaterials with promising characteristics to enable widespread applications. Herein, the visualization observation of the interactions of metal ions and fullerene derivatives, particularly anionic fullerenols (Fol), were carried out in aqueous solutions. The alkali metal salts only resulted in salting out of Fol to gain re-soluble sediments, whereas multivalent metal cations (Mn+, n = 2, 3) modulated further assembly of Fol to produce insoluble hybrids. These provide crucial insights into the directed assembly of Fol that two major forces involved in actuation are electrostatic and coordination effects. Through the precise modulation of feed ratios of Fol to Mn+, a variety of water-soluble Mn+@Fol coordination complexes were facilely prepared and subsequently characterized by various measurements. Among them, X-ray photoelectron spectra validated the coordination effects through the metal cation and oxygen binding feature. Transmission electron microscopy delivered valuable information about diverse morphologies and locally-ordered microstructures at the nanoscale. This study opens a new opportunity for developing a preparation strategy to fabricate water-soluble metal cation-fullerenol coordination complexes with various merits for potential application in biomedical fields.

11.
Int J Food Microbiol ; 411: 110551, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38171235

RESUMEN

Nanomaterials are widely investigated in sustainable agriculture owing to their unique physicochemical properties, especially Cu-based nanomaterial with eco-friendliness and essential for plant. However, the effect of CuO nanomaterial on Bipolaris sorokiniana (B. sorokiniana) is yet to be systematically understood. In this study, a three-dimension hierarchical structure CuO nanoflower (CuO NF) with ultrathin petals and excellent dispersibility in water was constructed and proved to have outstanding antifungal activity against B. sorokiniana with the inhibition rate of 86 % in mycelial growth, 74 % in mycelial dry weight and 75 % in conidial germination. Furthermore, the antifungal mechanism was assigned to the production of reactive oxygen species in intracellular caused by antioxidant mimicking activity of CuO NF to damage of cell membrane integrity and result cellular leakage. Additionally, the good control effect of CuO NF on wheat diseases caused by B. sorokiniana was demonstrated through pot experiment. This article firstly reveals the antifungal activity and mechanism of CuO NF on B. sorokiniana, and establishes the relationship between enzyme-like activity of CuO NF and its antifungal activity, which provides a promising application of Cu-based nanomaterial as nanofungicide in plant protection and a theoretical foundation for structure design of nanomaterials to improve their antifungal activities.


Asunto(s)
Ascomicetos , Nanoestructuras , Antifúngicos/farmacología , Antifúngicos/metabolismo , Nanoestructuras/química
12.
Signal Transduct Target Ther ; 9(1): 21, 2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38280862

RESUMEN

Abnormal metabolism is regarded as an oncogenic hallmark related to tumor progression and therapeutic resistance. Present study employed multi-omics, including phosphoproteomics, untargeted metabolomics and lipidomics, to demonstrate that the pAKT2 Ser128 and pCCTα Ser315/319/323-positive cancer-associated fibroblasts (CAFs) substantially release phosphatidylcholines (PCs), contributing to the resistance of focal adhesion kinase (FAK) inhibitors in esophageal squamous cell carcinoma (ESCC) treatment. Additionally, we observed extremely low levels of FAK Tyr397 expression in CAFs, potentially offering no available target for FAK inhibitors playing their anti-growth role in CAFs. Consequently, FAK inhibitor increased the intracellular concentration of Ca2+ in CAFs, promoting the formation of AKT2/CCTα complex, leading to phosphorylation of CCTα Ser315/319/323 sites and eventually enhancing stromal PC production. This activation could stimulate the intratumoral Janus kinase 2 (JAK2)/Signal transducer and activator of transcription 3 (STAT3) pathway, triggering resistance to FAK inhibition. Analysis of clinical samples demonstrated that stromal pAKT2 Ser128 and pCCTα Ser315/319/323 are related to the tumor malignancy and reduced patient survival. Pseudo-targeted lipidomics and further validation cohort quantitatively showed that plasma PCs enable to distinguish the malignant extent of ESCC patients. In conclusion, inhibition of stroma-derived PCs and related pathway could be possible therapeutic strategies for tumor therapy.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Proteína-Tirosina Quinasas de Adhesión Focal/genética , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/metabolismo , Transducción de Señal , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo
13.
Sci Total Environ ; 929: 172416, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38631627

RESUMEN

Widespread use of copper-based agrochemical may cause copper excessive accumulation in agricultural soil to seriously threaten crop production. Recently, fullerenols are playing important roles in helping crops build resistance to abiotic stresses by giving ingenious and successful resolutions. However, there is a lack of knowledge on their beneficial effects in crops under stresses induced by heavy metals. Herein, the visual observation of Cu2+-mediated assembly of fullerenols via electrostatic and coordination actions was carried out in vitro, showing that water-soluble nanocomplexes and water-insoluble cross-linking nanohybrids were selectively fabricated by precisely adjusting feeding ratios of fullerenols and CuSO4. Furthermore, maize simultaneous exposure of fullerenols and CuSO4 solutions was tested to investigate the comparative effects of seed germination and seedling growth relative to exposure of CuSO4 alone. Under moderate Cu2+ stresses (40 and 80 µM), fullerenols significantly mitigated the detrimental effects of seedlings, including phenotype, root and shoot elongation, biomass accumulation, antioxidant capacity, and Cu2+ uptake and copper transporter-related gene expressions in roots. Under 160 µM of Cu2+ as a stressor, fullerenols also accelerated germination of Cu2+-stressed seeds eventually up to the level of the control. Summarily, fullerenols can enhance tolerance of Cu2+-stressed maize mainly due to direct detoxification through fullerenol-Cu2+ interactions restraining the Cu2+ intake into roots and reducing free Cu2+ content in vivo, as well as fullerenol-maize interactions to enhance resistance by maintaining balance of reactive oxygen species and optimizing the excretion and transport of Cu2+. This will unveil valuable insights into the beneficial roles of fullerenols and its mechanism mode in alleviating heavy metal stress on crop plants.


Asunto(s)
Cobre , Plantones , Zea mays , Zea mays/efectos de los fármacos , Zea mays/fisiología , Cobre/toxicidad , Plantones/efectos de los fármacos , Contaminantes del Suelo , Fulerenos , Estrés Fisiológico , Germinación/efectos de los fármacos
14.
Int J Biol Sci ; 20(8): 2881-2903, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38904019

RESUMEN

The mechanism that maintains ER-to-Golgi vesicles formation and transport is complicated. As one of the adapters, Ninein-like protein (Nlp) participated in assembly and transporting of partial ER-to-Golgi vesicles that contained specific proteins, such as ß-Catenin and STING. Nlp acted as a platform to sustain the specificity and continuity of cargoes during COPII and COPI-coated vesicle transition and transportation through binding directly with SEC31A as well as Rab1B. Thus, we proposed an integrated transport model that particular adapter participated in specific cargo selection or transportation through cooperating with different membrane associated proteins to ensure the continuity of cargo trafficking. Deficiency of Nlp led to vesicle budding failure and accumulation of unprocessed proteins in ER, which further caused ER stress as well as Golgi fragmentation, and PERK-eIF2α pathway of UPR was activated to reduce the synthesis of universal proteins. In contrast, upregulation of Nlp resulted in Golgi fragmentation, which enhanced the cargo transport efficiency between ER and Golgi. Moreover, Nlp deficient mice were prone to spontaneous B cell lymphoma, since the developments and functions of lymphocytes significantly depended on secretory proteins through ER-to-Golgi vesicle trafficking, including IL-13, IL-17 and IL-21. Thus, perturbations of Nlp altered ER-to-Golgi communication and cellular homeostasis, and might contribute to the pathogenesis of B cell lymphoma.


Asunto(s)
Retículo Endoplásmico , Aparato de Golgi , Animales , Humanos , Ratones , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Transporte de Proteínas
15.
Sci China Life Sci ; 66(6): 1245-1263, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36763244

RESUMEN

Although Src is one of the oldest and most investigated oncoproteins, its function in tumor malignancy remains to be defined further. In this study, we demonstrated that the inhibition of Src activity by ponatinib effectively suppressed several malignant phenotypes of esophageal squamous cell carcinoma (ESCC) both in vitro and in vivo, whereas it did not produce growth-inhibitory effects on normal esophageal epithelial cells (NEECs). Importantly, we combined phosphoproteomics and several cellular and molecular biologic strategies to identify that Src interacted with the members of Src-family kinases (SFKs), such as Fyn or Lyn, to form heterodimers. Src interactions with Fyn and Lyn phosphorylated the tyrosine sites in SH2 (Fyn Tyr185 or Lyn Tyr183) and kinase domains (Fyn Tyr420 or Lyn Tyr397), which critically contributed to ESCC development. By contrast, Src could not form heterodimers with Fyn or Lyn in NEECs. We used RNA sequencing to comprehensively demonstrate that the inhibition of Src activity effectively blocked several critical tumor-promoting pathways, such as JAK/STAT, mTOR, stemness-related, and metabolism-related pathways. Results of the real-time polymerase chain reaction (RT-PCR) assay confirmed that Lyn and Fyn were critical effectors for the Src-mediated expression of tumor growth or metastasis-related molecules. Furthermore, results of the clinical ESCC samples showed that the hyperactivation of pSrc Tyr419, Fyn Tyr185 or Tyr420, and Lyn Tyr183 or Tyr397 could be biomarkers of ESCC prognosis. This study illustrates that Src/Fyn and Src/Lyn heterodimers serve as targets for the treatment of ESCC.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Proteínas Proto-Oncogénicas c-fyn/genética , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Proteínas Proto-Oncogénicas , Carcinoma de Células Escamosas de Esófago/diagnóstico , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/genética , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo , Tirosina/metabolismo , Fosforilación
16.
Acta Pharm Sin B ; 13(2): 694-708, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36873192

RESUMEN

Stroma surrounding the tumor cells plays crucial roles for tumor progression. However, little is known about the factors that maintain the symbiosis between stroma and tumor cells. In this study, we found that the transcriptional regulator-signal transducer and activator of transcription 3 (Stat3) was frequently activated in cancer-associated fibroblasts (CAFs), which was a potent facilitator of tumor malignancy, and formed forward feedback loop with platelet-activating factor receptor (PAFR) both in CAFs and tumor cells. Importantly, PAFR/Stat3 axis connected intercellular signaling crosstalk between CAFs and cancer cells and drove mutual transcriptional programming of these two types of cells. Two central Stat3-related cytokine signaling molecules-interleukin 6 (IL-6) and IL-11 played the critical role in the process of PAFR/Stat3 axis-mediated communication between tumor and CAFs. Pharmacological inhibition of PAFR and Stat3 activities effectively reduced tumor progression using CAFs/tumor co-culture xenograft model. Our study reveals that PAFR/Stat3 axis enhances the interaction between tumor and its associated stroma and suggests that targeting this axis can be an effective therapeutic strategy against tumor malignancy.

17.
Talanta ; 260: 124560, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37116362

RESUMEN

Quantum dots (QDs) have been widely used for bioimaging in vivo because of their excellent optical properties. As part of the preparation process of QD-based nanohybrids, purification is an important step for minimizing contaminants and improving the quality of the product. In this work, we describe high-performance size exclusion chromatography (HPSEC) used to purify nanohybrids of CdSe/ZnS QDs and anti-human epidermal growth factor receptor 2 antibodies (QD-HER2-Ab). The unbound antibody and suspended agglomerates were removed from freshly prepared QD-HER2-Ab via HPSEC. Pure and homogeneous QD-HER2-Ab were then used as immunofluorescence target imaging bioprobes in vivo. The QD-HER2-Ab did not cause any obvious acute toxicity in mice one week after a single intravenous injection of 15 nmol/kg. The purified QD-HER2-Ab bioprobes showed high tumor targeting ability in a human breast tumor xenograft nude mouse model (24 h after injected) with the possibility of in vivo immunofluorescence tumor imaging. The immunofluorescence imaging background signal and acute toxicity in vivo were minimized because of the reduction of residual QDs. HPSEC-purified QD-HER2-Ab is an accurate and convenient tool for in vivo tumor target imaging and HER2 detection, thus providing a basis for the purification of other QD-based bioprobes.


Asunto(s)
Neoplasias de la Mama , Puntos Cuánticos , Humanos , Ratones , Animales , Femenino , Puntos Cuánticos/toxicidad , Puntos Cuánticos/química , Anticuerpos/química , Neoplasias de la Mama/diagnóstico por imagen , Colorantes
18.
MedComm (2020) ; 4(6): e381, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37846367

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is a frequently seen esophageal tumor type in China. Activation of signaling proteins and relevant molecular mechanisms in ESCC are partially explored, impairing the antitumor efficiency of targeted therapy in ESCC treatment. Tumor-associated macrophages (TAMs)-released C-C motif chemokine 22 (CCL22) can activate intratumoral focal adhesion kinase (FAK), thus promoting the progression of ESCC. Here, we demonstrated that highly secreted CCL22 by TAMs (CCL22-positive TAMs) induced ESCC cell stemness and invasion through facilitating transcriptional activity of intratumoral glioma-associated oncogene 1 (Gli1), a downstream effector for Hedgehog (HH) pathway. Mechanistically, FAK-activated protein kinase B (AKT) mediated Gli1 phosphorylation at its Ser112/Thr115/Ser116 sites and released Gli1 from suppressor of fused homolog, the endogenous inhibitor of Gli1 to activate downstream stemness-associated factors, such as SRY-box transcription factor 2 (SOX2), Nanog homeobox (Nanog), or POU class 5 homeobox (OCT4). Furthermore, inhibition of FAK activity by VS-4718, the FAK inhibitor, enhanced antitumor effect of GDC-0449, the HH inhibitor, both in xenografted models and in vitro assays. Clinically, CCL22/Gli1 axis is used to evaluate ESCC prognosis. Overall, our study establishes the communication of FAK with HH pathway and offers the novel mechanism related to Gli1 activation independent of Smoothened as well as the rationale for the anti-ESCC combination treatment.

19.
Signal Transduct Target Ther ; 8(1): 302, 2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37582812

RESUMEN

Reprogrammed cellular metabolism is essential for maintaining cancer stem cells (CSCs) state. Here, we report that mitochondrial D-lactate catabolism is a necessary initiating oncogenic event during tumorigenesis of esophageal squamous cell carcinoma (ESCC). We discover that cyclin-dependent kinase 7 (CDK7) phosphorylates nuclear Yes-associated protein 1 (YAP) at S127 and S397 sites and enhances its transcription function, which promotes D-lactate dehydrogenase (LDHD) protein expression. Moreover, LDHD is enriched significantly in ESCC-CSCs rather than differentiated tumor cells and high LDHD status is connected with poor prognosis in ESCC patients. Mechanistically, the CDK7-YAP-LDHD axis helps ESCC-CSCs escape from ferroptosis induced by D-lactate and generates pyruvate to satisfy energetic demands for their elevated self-renewal potential. Hence, we conclude that esophageal CSCs adopt a D-lactate elimination and pyruvate accumulation mode dependent on CDK7-YAP-LDHD axis, which drives stemness-associated hallmarks of ESCC-CSCs. Reasonably, targeting metabolic checkpoints may serve as an effective strategy for ESCC therapy.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Ferroptosis , Humanos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Línea Celular Tumoral , Quinasas Ciclina-Dependientes/metabolismo , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas de Esófago/metabolismo , Ferroptosis/genética , L-Lactato Deshidrogenasa , Ácido Láctico/metabolismo , Células Madre Neoplásicas/metabolismo , Factores de Transcripción/genética
20.
Int J Biol Sci ; 18(13): 4824-4836, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35982900

RESUMEN

Long noncoding RNAs (lncRNAs) are dysregulated in many cancers. Here, we identified the molecular mechanisms of lncRNA Cancer Susceptibility Candidate 8 (CASC8) in promoting the malignancy of esophageal squamous cell carcinoma (ESCC). CASC8 was highly overexpressed in ESCC tissues and upregulation of CASC8 predicted poor prognosis in ESCC patients. Moreover, CASC8 decreased the cisplatin sensitivity of ESCC cells and promoted ESCC tumor growth in vivo. Mechanistically, CASC8 interacted with heterogeneous nuclear ribonucleoprotein L (hnRNPL) and inhibited its polyubiquitination and proteasomal degradation, thus stabilizing hnRNPL protein levels and activating the Bcl2/caspase3 pathway. Additionally, AlkB Homolog 5, RNA demethylase (ALKBH5)-mediated m6A demethylation stabilized the CASC8 transcript, resulting in CASC8 upregulation. Taken together, these findings identified an oncogenic function of CASC8 in the progression of ESCC, which suggest that CASC8 might become a potential prognostic biomarker in ESCC.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Ribonucleoproteína Heterogénea-Nuclear Grupo L , ARN Largo no Codificante , Ribonucleoproteínas , Línea Celular Tumoral , Proliferación Celular/genética , Resistencia a Antineoplásicos/genética , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo L/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo L/metabolismo , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA