Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cell Physiol ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38828783

RESUMEN

LncRNAs play various effects, mostly by sponging with miRNAs. Based on public databases integrating bioinformatics analyses and further validation in breast cancer (BC) tissue and cell lines, the effect of lncRNA AFAP1-AS1 on breast cancer cell proliferation and migration was verified. It might work via the miR-21/PTEN axis. The expression of AFAP1-AS1, which was significantly upregulated in BC tissues and cell lines, was correlated with old age and lymph node metastasis of patients with BC. Knockdown of AFAP1-AS1 inhibited the proliferation and migration of BC cells in vitro and in vivo. And downregulated miR-21 expression and upregulated PTEN expression additionally. Mechanistically, the knockdown of lncRNA AFAP1-AS1 upregulated PTEN expression and consequently attenuated miR-21-mediated enhanced BC cell proliferation and migration. LncRNA AFAP1-AS1 is a potential prognostic biomarker for BC patients.

2.
Rev Cardiovasc Med ; 23(10): 329, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39077135

RESUMEN

Background: Transradial artery (TRA) access for percutaneous coronary intervention (PCI) was associated with lower risks of major bleeding and vascular complications compared to transfemoral artery access. Use of large-bore ( ≥ 7-Fr) guiding catheters through TRA approach increased the likelihood of radial artery occlusion (RAO). This study aimed to investigate whether use of the thin-walled 7-Fr Glidesheath Slender, allowing PCI with large-caliber guiding catheters, is superior to standard 7-Fr Cordis sheath with respect to periprocedural RAO within 24 hours after transradial coronary intervention (TRI) in complex lesions. Methods: A prospective randomized, controlled, single-blinded (patient-blinded) trial was conducted, randomizing 504 patients with TRI for complex lesions to either 7-Fr Glidesheath Slender or conventional 7-Fr Cordis sheath. The primary outcome was defined as the incidence of periprocedural RAO with Doppler ultrasound during the first 24 hours after TRI. Results: The incidence of early RAO was 10.3% for 7-Fr Glidesheath Slender and 13.5% for conventional 7-Fr sheath (p = 0.271). The procedural success rate for Glidesheath Slender was 92.9% and for Cordis sheath was 93.7% (p = 0.722). There was no signficiant difference between treatment arms in terms of local hematoma and radial spasm, whereas use of the Glidesheath Slender was associated with significantly less pain during the procedure (numeric rating scale [NRS], 2.27 ± 0.75 vs. 2.45 ± 0.95, p = 0.017). The assessment of radial artery in ultrasound parameters after complex TRI was improved with Glidesheath Slender. Conclusions: Among patients with complex coronary lesions undergoing TRI, 7-Fr Glidesheath Slender was not superior to conventional 7-Fr in the prevention of periprocedural RAO within 24 hours following complex PCI, without reducing RAO occurrence. Clinical Trial Registration: NCT04748068.

3.
J Geriatr Cardiol ; 21(1): 44-63, 2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38440338

RESUMEN

OBJECTIVES: To establish a scoring system combining the ACEF score and the quantitative blood flow ratio (QFR) to improve the long-term risk prediction of patients undergoing percutaneous coronary intervention (PCI). METHODS: In this population-based cohort study, a total of 46 features, including patient clinical and coronary lesion characteristics, were assessed for analysis through machine learning models. The ACEF-QFR scoring system was developed using 1263 consecutive cases of CAD patients after PCI in PANDA III trial database. The newly developed score was then validated on the other remaining 542 patients in the cohort. RESULTS: In both the Random Forest Model and the DeepSurv Model, age, renal function (creatinine), cardiac function (LVEF) and post-PCI coronary physiological index (QFR) were identified and confirmed to be significant predictive factors for 2-year adverse cardiac events. The ACEF-QFR score was constructed based on the developmental dataset and computed as age (years)/EF (%) + 1 (if creatinine ≥ 2.0 mg/dL) + 1 (if post-PCI QFR ≤ 0.92). The performance of the ACEF-QFR scoring system was preliminarily evaluated in the developmental dataset, and then further explored in the validation dataset. The ACEF-QFR score showed superior discrimination (C-statistic = 0.651; 95% CI: 0.611-0.691, P < 0.05 versus post-PCI physiological index and other commonly used risk scores) and excellent calibration (Hosmer-Lemeshow χ2 = 7.070; P = 0.529) for predicting 2-year patient-oriented composite endpoint (POCE). The good prognostic value of the ACEF-QFR score was further validated by multivariable Cox regression and Kaplan-Meier analysis (adjusted HR = 1.89; 95% CI: 1.18-3.04; log-rank P < 0.01) after stratified the patients into high-risk group and low-risk group. CONCLUSIONS: An improved scoring system combining clinical and coronary lesion-based functional variables (ACEF-QFR) was developed, and its ability for prognostic prediction in patients with PCI was further validated to be significantly better than the post-PCI physiological index and other commonly used risk scores.

4.
Artículo en Inglés | MEDLINE | ID: mdl-39158678

RESUMEN

BACKGROUND AND OBJECTIVES: Smoothened (SMO), a key component of the hedgehog signaling pathway, represents a therapeutic target for triple negative breast cancer (TNBC), yet the chemotherapy response rate in TNBC patients is only 40-50%, underscoring the urgent need for the development of novel drugs to effectively treat this condition. The novel compound TPB15, an SMO inhibitor derived from [1,2,4] triazolo [4,3-α] pyridines, demonstrated superior anti-TNBC activity and lower toxicity compared to the first SMO inhibitor vismodegib in both in vitro and in vivo. However, the compound's pharmacokinetic properties remain unclear. The present work aims to develop a simple HPLC-MS/MS method to profile the pharmacokinetics and bioavailability of TPB15 in rats as a ground work for further clinical research. METHODS: Separation was performed on an Agilent ZORBAX StableBond C18 column by gradient elution using acetonitrile and 0.1% formic acid as mobile phase at a flow rate of 0.3 mL/min. Multiple reaction monitoring(MRM) in positive mode with the transitions of m/z 454.2 → 100.0, 248.1 → 121.1 was employed to determine TPB15 and internal standard tinidazole, respectively. The specificity, intra- and inter- day precision and accuracy, extraction recovery, stability, matrix effect, dilution integrity and carryover of the method was validated. The pharmacokinetics and bioavailability  study of TPB15 were carried out on rats through intravenous injection at the dose of 5 mg/kg and oral gavage at the dose of 25 mg/kg, and the pharmacokinetics parameters were calculated by the non-compartment analysis using the pharmacokinetics software DAS 2.1.1. RESULTS: The values of specificity, intra- and inter- day precision and accuracy, extraction recovery, stability, matrix effect, dilution integrity and carryover satisfied the acceptable limits. The lower limit of quantification of this method was 10 ng/mL with a linear range of 10-2000 ng/mL. The validated method was then applied to pharmacokinetics and bioavailability studies in rat by dosing with gavage (25 mg/kg) and intravenous injection(5 mg/kg), and the oral bioavailability of TBP15 in rat was calculated as 16.4 ± 3.5%. The pharmacokinetic parameters were calculated as following: maximum of plasma concentration (Cmax) (PO: 2787.17 ± 279.45 µg/L), Time to maximum plasma concentration (Tmax) (PO: 4.20 ± 0.90 h), the area under the concentration-time curve 0 to time (AUC0-t) (PO: 17,373.03 ± 2585.18 ng/mL·h, IV: 21,129.79 ± 3360.84 ng/mL·h), the area under the concentration-time curve 0 to infinity (AUC0-∞) (PO: 17,443.85 ± 2597.63 ng/mL·h, IV: 17,443.85 ± 2597.63 ng/mL·h), terminal elimination half-life (t1/2) (PO: 7.26 ± 2.16 h, IV: 4.78 ± 1.09 h). CONCLUSIONS: TPB15, a promising candidate for treating TNBC, has demonstrated outstanding efficacy and safety in vitro and in vivo. This study established a simple, sensitive, and rapid HPLC-MS/MS bioanalytical method, developed and validated in accordance with FDA and EMA guidelines, for conducting pharmacokinetic and bioavailability studies of TPB15. The results revealed a favorable pharmacokinetic profile owing to its long t1/2. Nevertheless, the next phase of research should include formulation screening to enhance bioavailability, as well as clinical trials, metabolism pathway analysis, and assessment of potential drug-drug interactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA