Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Opt Express ; 32(4): 6025-6036, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38439315

RESUMEN

Quantum imaging based on entangled light sources exhibits enhanced background resistance compared to conventional imaging techniques in low-light conditions. However, direct imaging of dynamic targets remains challenging due to the limited count rate of entangled photons. In this paper, we propose a quantum imaging method based on quantum compressed sensing that leverages the strong correlation characteristics of entangled photons and the randomness inherent in photon pair generation and detection. This approach enables the construction of a compressed sensing system capable of directly imaging high-speed dynamic targets. The results demonstrate that our system successfully achieves imaging of a target rotating at a frequency of 10 kHz, while maintaining an impressive data compression rate of 10-6. This proposed method introduces a pioneering approach for the practical implementation of quantum imaging in real-world scenarios.

2.
Opt Express ; 31(5): 7589-7598, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36859888

RESUMEN

With single-photon sensitivity and picosecond resolution, single-photon imaging technology is an ideal solution for extreme conditions and ultra-long distance imaging. However, the current single-photon imaging technology has the problem of slow imaging speed and poor quality caused by the quantum shot noise and the fluctuation of background noise. In this work, an efficient single-photon compressed sensing imaging scheme is proposed, in which a new mask is designed by the Principal Component Analysis algorithm and the Bit-plane Decomposition algorithm. By considering the effects of quantum shot noise, dark count on imaging, the number of masks is optimized to ensure high-quality single-photon compressed sensing imaging with different average photon counts. The imaging speed and quality are greatly improved compared with the commonly used Hadamard scheme. In the experiment, a 64 × 64 pixels' image is obtained with only 50 masks, the sampling compression rate reaches 1.22%, and the sampling speed increases by 81 times. The simulation and experimental results demonstrated that the proposed scheme will effectively promote the application of single-photon imaging in practical scenarios.

3.
Opt Express ; 31(5): 7564-7571, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36859885

RESUMEN

Infrared up-conversion single-photon imaging has potential applications in remote sensing, biological imaging, and night vision imaging. However, the used photon counting technology has the problem of long integration time and sensitivity to background photons, which limit its application in real-world scenarios. In this paper, a novel passive up-conversion single-photon imaging method is proposed, in which the high frequency scintillation information of a near infrared target is captured by using the quantum compressed sensing. Through the frequency domain characteristic imaging of the infrared target, the imaging signal-to-noise ratio is significantly improved with strong background noise. In the experiment, the target with flicker frequency on the order of GHz is measured, and the signal-to-background ratio of the imaging reaches up to 1:100. Our proposal greatly improved the robustness of near-infrared up-conversion single-photon imaging and will promote its practical application.

4.
RSC Adv ; 13(18): 12483-12494, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37091603

RESUMEN

In the present work, palygorskite (PAL) supported Co-Fe oxides (CoFe@PAL) were prepared and used as a peroxymonosulfate (PMS) activator for removal of rhodamine B (RhB) in water. The results showed that CoFe@PAL prepared at impregnation solution of 50 g L-1 and calcination temperature of 500 °C showed the best catalytic performance. The removal efficiency of RhB (10 mg L-1) by PMS (0.1 mmol L-1) activated with CoFe@PAL (1 g L-1) was above 98% within 60 min. The effects of various environmental factors including initial pH, humic acid (HA) and inorganic anions on the removal effect were simultaneously investigated. The radical quenching experiments and EPR characterization revealed that ˙OH, SO4˙-, O2˙- and 1O2 radicals existed in the CoFe@PAL/PMS system simultaneously. The intermediates during RhB degradation were analyzed by LC-MS and possible degradation pathways of RhB were proposed. Moreover, CoFe@PAL exhibited superior stability and reusability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA