Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 289(13): 8781-98, 2014 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-24500718

RESUMEN

Phosphorylation of gap junction proteins, connexins, plays a role in global signaling events involving kinases. Connexin43 (Cx43), a ubiquitous and important connexin, has several phosphorylation sites for specific kinases. We appended an imaging reporter tag for the activity of the δ isoform of protein kinase C (PKCδ) to the carboxyl terminus of Cx43. The FRET signal of this reporter is inversely related to the phosphorylation of serine 368 of Cx43. By activating PKC with the phorbol ester phorbol 12,13-dibutyrate (PDBu) or a natural stimulant, UTP, time lapse live cell imaging movies indicated phosphorylated Ser-368 Cx43 separated into discrete domains within gap junctions and was internalized in small vesicles, after which it was degraded by lysosomes and proteasomes. Mutation of Ser-368 to an Ala eliminated the response to PDBu and changes in phosphorylation of the reporter. A phosphatase inhibitor, calyculin A, does not change this pattern, indicating PKC phosphorylation causes degradation of Cx43 without dephosphorylation, which is in accordance with current hypotheses that cells control their intercellular communication by a fast and constant turnover of connexins, using phosphorylation as part of this mechanism.


Asunto(s)
Conexina 43/metabolismo , Uniones Comunicantes/metabolismo , Movimiento , Proteína Quinasa C-delta/metabolismo , Proteolisis , Animales , Células COS , Chlorocebus aethiops , Conexina 43/química , Uniones Comunicantes/efectos de los fármacos , Células HeLa , Humanos , Movimiento/efectos de los fármacos , Ésteres del Forbol/farmacología , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , Fosforilación/efectos de los fármacos , Proteína Quinasa C-delta/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Transporte de Proteínas/efectos de los fármacos , Proteolisis/efectos de los fármacos , Serina/metabolismo
2.
Biochem J ; 452(2): 195-209, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23662807

RESUMEN

PKC (protein kinase C) has been in the limelight since the discovery three decades ago that it acts as a major receptor for the tumour-promoting phorbol esters. Phorbol esters, with their potent ability to activate two of the three classes of PKC isoenzymes, have remained the best pharmacological tool for directly modulating PKC activity. However, with the discovery of other phorbol ester-responsive proteins, the advent of various small-molecule and peptide modulators, and the need to distinguish isoenzyme-specific activity, the pharmacology of PKC has become increasingly complex. Not surprisingly, many of the compounds originally touted as direct modulators of PKC have subsequently been shown to hit many other cellular targets and, in some cases, not even directly modulate PKC. The complexities and reversals in PKC pharmacology have led to widespread confusion about the current status of the pharmacological tools available to control PKC activity. In the present review, we aim to clarify the cacophony in the literature regarding the current state of bona fide and discredited cellular PKC modulators, including activators, small-molecule inhibitors and peptides, and also address the use of genetically encoded reporters and of PKC mutants to measure the effects of these drugs on the spatiotemporal dynamics of signalling by specific isoenzymes.


Asunto(s)
Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Animales , Activación Enzimática/efectos de los fármacos , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/química , Isoenzimas/metabolismo , Ligandos , Modelos Moleculares , Ésteres del Forbol/farmacología , Proteína Quinasa C/química , Inhibidores de Proteínas Quinasas/química
3.
J Biol Chem ; 287(45): 37891-906, 2012 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-22988234

RESUMEN

PKCδ signaling to mitochondria has been implicated in both mitochondrial apoptosis and metabolism. However, the mechanism by which PKCδ interacts with mitochondria is not well understood. Using FRET-based imaging, we show that PKCδ interacts with mitochondria by a novel and isozyme-specific mechanism distinct from its canonical recruitment to other membranes such as the plasma membrane or Golgi. Specifically, we show that PKCδ interacts with mitochondria following stimulation with phorbol esters or, in L6 myocytes, with insulin via a mechanism that requires two steps. In the first step, PKCδ translocates acutely to mitochondria by a mechanism that requires its C1A and C1B domains and a Leu-Asn sequence in its turn motif. In the second step, PKCδ is retained at mitochondria by a mechanism that depends on its C2 domain, a unique Glu residue in its activation loop, intrinsic catalytic activity, and the mitochondrial membrane potential. In contrast, of these determinants, only the C1B domain is required for the phorbol ester-stimulated translocation of PKCδ to other membranes. PKCδ also basally localizes to mitochondria and increases mitochondrial respiration via many of the same determinants that promote its agonist-evoked interaction. PKCδ localized to mitochondria has robust activity, as revealed by a FRET reporter of PKCδ-specific activity (δCKAR). These data support a model in which multiple determinants unique to PKCδ drive a specific interaction with mitochondria that promotes mitochondrial respiration.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Microscopía Fluorescente/métodos , Mitocondrias/metabolismo , Imagen Molecular/métodos , Proteína Quinasa C-delta/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Células COS , Línea Celular , Chlorocebus aethiops , Humanos , Immunoblotting , Indoles/farmacología , Isoenzimas/genética , Isoenzimas/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Maleimidas/farmacología , Datos de Secuencia Molecular , Mutación , Mioblastos Esqueléticos/citología , Mioblastos Esqueléticos/efectos de los fármacos , Mioblastos Esqueléticos/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Forbol 12,13-Dibutirato/farmacología , Unión Proteica , Proteína Quinasa C-delta/antagonistas & inhibidores , Proteína Quinasa C-delta/genética , Inhibidores de Proteínas Quinasas/farmacología , Transporte de Proteínas/efectos de los fármacos , Homología de Secuencia de Aminoácido
4.
J Biol Chem ; 287(16): 12879-85, 2012 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-22378786

RESUMEN

A number of recent studies have used pharmacological inhibitors to establish a role for protein kinase Mζ (PKMζ) in synaptic plasticity and memory. These studies use zeta inhibitory peptide (ZIP) and chelerythrine as inhibitors of PKMζ to block long term potentiation and memory; staurosporine is used as a negative control to show that a nonspecific kinase inhibitor does not block long term potentiation and memory. Here, we show that neither ZIP nor chelerythrine inhibits PKMζ in cultured cells or brain slices. In contrast, staurosporine does block PKMζ activity in cells and brain slices by inhibiting its upstream phosphoinositide-dependent kinase-1. These studies demonstrate that the effectiveness of drugs against purified PKMζ may not be indicative of their specificity in the more complex environment of the cell and suggest that PKMζ is unlikely to be the mediator of synaptic plasticity or memory.


Asunto(s)
Hipocampo/efectos de los fármacos , Hipocampo/enzimología , Memoria/fisiología , Proteína Quinasa C/metabolismo , Animales , Antineoplásicos/farmacología , Benzofenantridinas/farmacología , Células COS , Chlorocebus aethiops , Inhibidores Enzimáticos/farmacología , Células HEK293 , Células HeLa , Humanos , Plasticidad Neuronal/fisiología , Técnicas de Cultivo de Órganos , Péptidos/farmacología , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Proteína Quinasa C/antagonistas & inhibidores , Ratas , Estaurosporina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA