RESUMEN
We introduce HistoNet, a deep neural network trained on normal tissue. On 1690 slides with rat tissue samples from 6 preclinical toxicology studies, tissue regions were outlined and annotated by pathologists into 46 different tissue classes. From these annotated regions, we sampled small 224 × 224 pixels images (patches) at 6 different levels of magnification. Using 4 studies as training set and 2 studies as test set, we trained VGG-16, ResNet-50, and Inception-v3 networks separately at each magnification level. Among these model architectures, Inception-v3 and ResNet-50 outperformed VGG-16. Inception-v3 identified the tissue from query images, with an accuracy up to 83.4%. Most misclassifications occurred between histologically similar tissues. Investigation of the features learned by the model (embedding layer) using Uniform Manifold Approximation and Projection revealed not only coherent clusters associated with the individual tissues but also subclusters corresponding to histologically meaningful structures that had not been annotated or trained for. This suggests that the histological representation learned by HistoNet could be useful as the basis of other machine learning algorithms and data mining. Finally, we found that models trained on rat tissues can be used on non-human primate and minipig tissues with minimal retraining.
Asunto(s)
Aprendizaje Profundo , Animales , Técnicas Histológicas , Humanos , Aprendizaje Automático , Redes Neurales de la Computación , Ratas , Porcinos , Porcinos EnanosRESUMEN
In nonrodent toxicity studies that are usually conducted in cynomolgus monkeys or beagle dogs, the added value of examining all tissues from all dose groups (current practice) versus all tissues in only control and high-dose groups and target tissues in intermediate-dose groups by default, is a subject of debate. A previous retrospective review of 325 nonrodent toxicity studies that included a limited number of biotherapeutics suggested that the evaluation of all tissues from all groups was not justified as a routine practice and recommended the examination of all tissues in control and high-dose groups and only target tissues in intermediate-dose groups. In contrast, the present retrospective review which examined 213 nonrodent studies (212 in cynomolgus monkeys and 1 in dog) from 4 multinational pharmaceutical companies (Bristol-Myers Squibb, Novartis, Pfizer Inc, and Roche) conducted only with biotherapeutics showed that restricting the microscopic examination in intermediate-dose groups to target tissues has the potential to miss findings in 6.6% of studies, possibly impacting the overall study interpretation and conclusion. In conclusion and in the opinion of the authors, all tissues from all dose groups should be examined in toxicity studies with biotherapeutics conducted in nonrodent species.
Asunto(s)
Microscopía , Animales , Perros , Macaca fascicularis , Estudios RetrospectivosRESUMEN
Histopathology data comprise a critical component of pharmaceutical toxicology studies and are typically presented as finding incidence counts and severity scores per organ, and tabulated on multiple pages which can be challenging for review and aggregation of results. However, the SEND (Standard for Exchange of Nonclinical Data) standard provides a means for collecting and managing histopathology data in a uniform fashion which can allow informatics systems to archive, display and analyze data in novel ways. Various software applications have become available to convert histopathology data into graphical displays for analyses. A subgroup of the FDA-PhUSE Nonclinical Working Group conducted intra-industry surveys regarding the use of graphical displays of histopathology data. Visual cues, use-cases, the value of cross-domain and cross-study visualizations, and limitations were topics for discussion in the context of the surveys. The subgroup came to the following conclusions. Graphical displays appear advantageous as a communication tool to both pathologists and non-pathologists, and provide an efficient means for communicating pathology findings to project teams. Graphics can support hypothesis-generation which could include cross-domain interactive visualizations and/-or aggregating large datasets from multiple studies to observe and/or display patterns and trends. Incorporation of the SEND standard will provide a platform by which visualization tools will be able to aggregate, select and display information from complex and disparate datasets.
Asunto(s)
Gráficos por Computador , Presentación de Datos , Descubrimiento de Drogas/métodos , Industria Farmacéutica/métodos , Patología/métodos , Pruebas de Toxicidad/métodos , Comunicación , Comprensión , Consenso , Humanos , Medición de Riesgo , Programas Informáticos , Percepción VisualRESUMEN
Deficiency of a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13), a VWF-cleaving protease, is the key factor in the pathogenesis of thrombotic thrombocytopenic purpura (TTP), a life-threatening thrombotic microangiopathy. It is well established that ADAMTS13 deficiency results in elevated plasma levels of ultra-large VWF multimers (ULVWF), which are prone to induce platelet aggregation; however, the actual trigger of TTP development remains uncertain. Here we describe a new animal model in which some TTP-like symptoms can be triggered in ADAMTS13 knockout mice by challenge with 2000 units/kg body weight of recombinant human VWF containing ULVWF multimers. Animals rapidly showed clinical symptoms and developed severe thrombocytopenia. Schistocytosis, a decrease in hematocrit, and elevated serum lactate dehydrogenase levels were observed. The heart was identified as the most sensitive target organ with rapid onset of extensive platelet aggregation in the ventricles and myocardial necrosis. Prophylactic administration of 200 units/kg recombinant human ADAMTS13 protected ADAMTS13 knockout mice from developing TTP. Therapeutic administration of 320 units/kg rhADAMTS13 reduced the incidence and severity of TTP findings in a treatment interval-dependent manner. We therefore consider this newly established mouse model of thrombotic microangiopathy highly predictive for investigating the efficacy of new treatments for TTP.
Asunto(s)
Proteínas ADAM/uso terapéutico , Modelos Animales de Enfermedad , Metaloendopeptidasas/genética , Ratones Noqueados , Púrpura Trombocitopénica Trombótica/tratamiento farmacológico , Púrpura Trombocitopénica Trombótica/genética , Proteínas ADAM/administración & dosificación , Proteína ADAMTS13 , Animales , Peso Corporal/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Femenino , Hematócrito , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Recuento de Plaquetas , Púrpura Trombocitopénica Trombótica/sangre , Púrpura Trombocitopénica Trombótica/patología , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/uso terapéutico , Resultado del TratamientoRESUMEN
Using a novel physiologically relevant in vitro human whole blood neutrophil shape change assay, an aminopyrazine series of selective PI3Kγ inhibitors was identified and prioritized for further optimization. Severe solubility limitations associated with the series leading to low oral bioavailability and poor exposures, especially at higher doses, were overcome by moving to an aminopyridine core. Compound 33, with the optimal balance of on-target activity, selectivity, and pharmacokinetic parameters, progressed into in vivo studies and demonstrated good efficacy (10 mg/kg) in a rat model of airway inflammation. Sufficient exposures were achieved at high doses to support toxicological studies, where unexpected inflammatory cell infiltrates in cardiovascular tissue prevented further compound development.
Asunto(s)
Aminopiridinas/uso terapéutico , Antiinflamatorios/uso terapéutico , Fosfatidilinositol 3-Quinasa Clase Ib/metabolismo , Inflamación/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Aminopiridinas/síntesis química , Aminopiridinas/farmacocinética , Aminopiridinas/toxicidad , Animales , Antiinflamatorios/síntesis química , Antiinflamatorios/farmacocinética , Antiinflamatorios/toxicidad , Femenino , Humanos , Estructura Molecular , Nivel sin Efectos Adversos Observados , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/farmacocinética , Inhibidores de Proteínas Quinasas/toxicidad , Pirazinas/síntesis química , Pirazinas/farmacocinética , Pirazinas/uso terapéutico , Pirazinas/toxicidad , Ratas Sprague-Dawley , Relación Estructura-ActividadRESUMEN
Hydrogels are under active development for controlled drug delivery, but their clinical translation is limited by low drug loading capacity, deficiencies in mechanical toughness and storage stability, and poor control over the drug release that often results in burst release and short release duration. This work reports a design of composite clay hydrogels, which simultaneously achieve a spectrum of mechanical, storage, and drug loading/releasing properties to address the critical needs from translational perspectives. The clay nanoparticles provide large surface areas to adsorb biological drugs, and assemble into microparticles that are physically trapped within and toughen hydrogel networks. The composite hydrogels demonstrate feasibility of storage, and extended release of large quantities of an insulin-like growth factor-1 mimetic protein (8 mg mL-1 ) over four weeks. The release rate is primarily governed by ionic exchange and can be upregulated by low pH, which is typical for injured tissues. A rodent model of Achilles tendon injury is used to demonstrate that the composite hydrogels allow for highly extended and localized release of biological drugs in vivo, while demonstrating biodegradation and biocompatibility. These attributes make the composite hydrogel a promising system for drug delivery and regenerative medicine.
Asunto(s)
Tendón Calcáneo , Materiales Biomiméticos , Portadores de Fármacos , Hidrogeles , Factor I del Crecimiento Similar a la Insulina , Péptidos , Traumatismos de los Tendones , Tendón Calcáneo/metabolismo , Tendón Calcáneo/patología , Animales , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacocinética , Materiales Biomiméticos/farmacología , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacocinética , Preparaciones de Acción Retardada/farmacología , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacología , Femenino , Humanos , Hidrogeles/química , Hidrogeles/farmacocinética , Hidrogeles/farmacología , Ratones , Células 3T3 NIH , Péptidos/química , Péptidos/farmacocinética , Péptidos/farmacología , Ratas , Ratas Sprague-Dawley , Traumatismos de los Tendones/tratamiento farmacológico , Traumatismos de los Tendones/metabolismo , Traumatismos de los Tendones/patologíaRESUMEN
The FGF19- fibroblast growth factor receptor (FGFR4)-ßKlotho (KLB) pathway plays an important role in the regulation of bile acid (BA) homeostasis. Aberrant activation of this pathway has been described in the development and progression of a subset of liver cancers including hepatocellular carcinoma, establishing FGFR4 as an attractive therapeutic target for such solid tumors. FGF401 is a highly selective FGFR4 kinase inhibitor being developed for hepatocellular carcinoma, currently in phase I/II clinical studies. In preclinical studies in mice and dogs, oral administration of FGF401 led to induction of Cyp7a1, elevation of its peripheral marker 7alpha-hydroxy-4-cholesten-3-one, increased BA pool size, decreased serum cholesterol and diarrhea in dogs. FGF401 was also associated with increases of serum aminotransferases, primarily alanine aminotransferase (ALT), in the absence of any observable adverse histopathological findings in the liver, or in any other organs. We hypothesized that the increase in ALT could be secondary to increased BAs and conducted an investigative study in dogs with FGF401 and coadministration of the BA sequestrant cholestyramine (CHO). CHO prevented and reversed FGF401-related increases in ALT in dogs in parallel to its ability to reduce BAs in the circulation. Correlation analysis showed that FGF401-mediated increases in ALT strongly correlated with increases in taurolithocholic acid and taurodeoxycholic acid, the major secondary BAs in dog plasma, indicating a mechanistic link between ALT elevation and changes in BA pool hydrophobicity. Thus, CHO may offer the potential to mitigate elevations in serum aminotransferases in human subjects that are caused by targeted FGFR4 inhibition and elevated intracellular BA levels.