Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
EMBO Rep ; 25(8): 3547-3573, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39009832

RESUMEN

The COVID-19 pandemic reminded us of the urgent need for new antivirals to control emerging infectious diseases and potential future pandemics. Immunotherapy has revolutionized oncology and could complement the use of antivirals, but its application to infectious diseases remains largely unexplored. Nucleoside analogs are a class of agents widely used as antiviral and anti-neoplastic drugs. Their antiviral activity is generally based on interference with viral nucleic acid replication or transcription. Based on our previous work and computer modeling, we hypothesize that antiviral adenosine analogs, like remdesivir, have previously unrecognized immunomodulatory properties which contribute to their therapeutic activity. In the case of remdesivir, we here show that these properties are due to its metabolite, GS-441524, acting as an Adenosine A2A Receptor antagonist. Our findings support a new rationale for the design of next-generation antiviral agents with dual - immunomodulatory and intrinsic - antiviral properties. These compounds could represent game-changing therapies to control emerging viral diseases and future pandemics.


Asunto(s)
Adenosina Monofosfato , Adenosina , Alanina , Antivirales , COVID-19 , SARS-CoV-2 , Antivirales/farmacología , Antivirales/química , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/inmunología , Adenosina/análogos & derivados , Adenosina/farmacología , Adenosina/química , Humanos , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/farmacología , Alanina/química , COVID-19/inmunología , COVID-19/virología , Animales , Agentes Inmunomoduladores/farmacología , Agentes Inmunomoduladores/química , Antagonistas del Receptor de Adenosina A2/farmacología , Antagonistas del Receptor de Adenosina A2/química , Antagonistas del Receptor de Adenosina A2/uso terapéutico , Pandemias , Tratamiento Farmacológico de COVID-19 , Chlorocebus aethiops , Replicación Viral/efectos de los fármacos , Células Vero , Betacoronavirus/efectos de los fármacos , Betacoronavirus/inmunología , Receptor de Adenosina A2A/metabolismo , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología
2.
Nucleic Acids Res ; 52(9): 5016-5032, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38471819

RESUMEN

Viruses are master remodelers of the host cell environment in support of infection and virus production. For example, viruses typically regulate cell gene expression through modulating canonical cell promoter activity. Here, we show that Epstein Barr virus (EBV) replication causes 'de novo' transcription initiation at 29674 new transcription start sites throughout the cell genome. De novo transcription initiation is facilitated in part by the unique properties of the viral pre-initiation complex (vPIC) that binds a TATT[T/A]AA, TATA box-like sequence and activates transcription with minimal support by additional transcription factors. Other de novo promoters are driven by the viral transcription factors, Zta and Rta and are influenced by directional proximity to existing canonical cell promoters, a configuration that fosters transcription through existing promoters and transcriptional interference. These studies reveal a new way that viruses interact with the host transcriptome to inhibit host gene expression and they shed light on primal features driving eukaryotic promoter function.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Iniciación de la Transcripción Genética , Replicación Viral , Humanos , Herpesvirus Humano 4/fisiología , Interacciones Huésped-Patógeno , Regiones Promotoras Genéticas , TATA Box , Factores de Transcripción/metabolismo , Sitio de Iniciación de la Transcripción , Transcripción Genética , Proteínas Virales/metabolismo , Proteínas Virales/genética , Infecciones por Virus de Epstein-Barr/metabolismo , Infecciones por Virus de Epstein-Barr/virología
3.
Clin Immunol ; 260: 109915, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38286172

RESUMEN

The increased risk for acquiring secondary illnesses in people living with HIV (PLWH) has been associated with immune dysfunction. We have previously found that circulating monocytes from PLWH display a trained phenotype. Here, we evaluated the metabolic profile of these cells and found increased mitochondrial respiration and glycolysis of monocyte-derived macrophages (MDMs) from PLWH. We additionally found that cART shifted the energy metabolism of MDMs from controls toward increased utilization of mitochondrial respiration. Importantly, both downregulation of IKAROS expression and inhibition of the mTOR pathway reversed the metabolic profile of MDMs from PLWH and cART-treated control-MDMs. Altogether, this study reveals a very specific metabolic adaptation of MDMs from PLWH, which involves an IKAROS/mTOR-dependent increase of mitochondrial respiration and glycolysis. We propose that this metabolic adaptation decreases the ability of these cells to respond to environmental cues by "locking" PLWH monocytes in a pro-inflammatory and activated phenotype.


Asunto(s)
Infecciones por VIH , Humanos , Macrófagos , Monocitos , Fenotipo , Serina-Treonina Quinasas TOR/metabolismo
4.
Respirology ; 24(7): 675-683, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30747487

RESUMEN

BACKGROUND AND OBJECTIVE: Endothelial microparticles (EMP) are submicron vesicles released from endothelial cells. We aimed to determine the utility of EMP as biomarkers of pulmonary arterial hypertension (PAH) in systemic sclerosis (SSc) patients and the pathogenic role of microparticles (MP) in vascular inflammation. METHODS: Levels of EMP (CD144+, CD31+, CD62E+ and CD143+) were compared between three groups (10 SSc patients with PAH, 10 SSc patients without pulmonary hypertension (no-PH) and 10 healthy age- and sex-matched controls). Human pulmonary artery endothelial cells (HPAEC) were exposed in vitro to MP obtained from SSc patients or healthy controls, and levels of cytokines and inflammatory adhesion molecules were compared. RESULTS: CD144+ EMP were significantly higher in the SSc-PAH group compared to either the SSc-no PH or healthy controls (diagnostic accuracy 80%, P = 0.02). Compared to controls, SSc patients had higher CD31+/CD62E+ ratios, indicating larger contributions of apoptosis to EMP release (P = 0.04). Patients with limited SSc had significantly higher levels of CD143+ EMP compared to those with diffuse subtype (P = 0.008). When HPAEC were exposed to MP from SSc patients, there was a significant increase in inflammatory cytokines and adhesion molecules. Interestingly, exposure to healthy control MP caused a reduction in inflammatory markers. CONCLUSION: EMP (particularly CD144+) are promising biomarkers of PAH in SSc but require further study. MP isolated from SSc patients induced an increase in endothelial cell inflammation and may be an important pathogenic factor in SSc.


Asunto(s)
Micropartículas Derivadas de Células , Células Endoteliales/metabolismo , Hipertensión Pulmonar/metabolismo , Esclerodermia Sistémica/metabolismo , Biomarcadores/metabolismo , Citocinas/metabolismo , Femenino , Humanos , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/patología , Masculino , Persona de Mediana Edad , Proyectos Piloto , Arteria Pulmonar/patología , Esclerodermia Sistémica/complicaciones , Esclerodermia Sistémica/patología
5.
Mediators Inflamm ; 2019: 1656484, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31178661

RESUMEN

Dendritic cells (DCs) are critical in asthma and many other immune diseases. We previously demonstrated a role for PARP-1 in asthma. Evidence on PARP-1 playing a role in Th2-associated DC function is not clear. In this study, we examined whether PARP-1 is critical for DC differentiation and function using bone marrow progenitors and their migration to the lung in an ovalbumin-based mouse model of asthma. Results show that changes in PARP-1 levels during GM-CSF-induced DC differentiation from bone marrow progenitors were cyclic and appear to be part of an array of changes that included STAT3/STAT5/STAT6/GRAIL/RAD51. Interestingly, PARP-1 gene deletion affected primarily STAT6 and γH2AX. PARP-1 inhibition significantly reduced the migration of DCs to the lungs of ovalbumin-challenged mice, which was associated with a concomitant reduction in lung levels of the adhesion molecule VCAM-1. The requirement of PARP-1 for VCAM-1 expression was confirmed using endothelial and lung smooth muscle cells. PARP-1 expression and activity were also required for VCAM-1 in differentiated DCs. An assessment of CD11b+/CD11c+/MHCIIhigh DCs in spleens and lymph nodes of OVA-sensitized mice revealed that PARP-1 inhibition genetically or by olaparib exerted little to no effect on DC differentiation, percentage of CD80+/CD86+/CD40+-expressing cells, or their capacity to promote proliferation of ovalbumin-primed (OTII) CD4+ T cells. These findings were corroborated using GM-CSF-induced differentiation of DCs from the bone marrow. Surprisingly, the PARP-1-/- DCs exhibited a higher intrinsic capacity to induce OTII CD4+ T cell proliferation in the absence of ovalbumin. Overall, our results show that PARP-1 plays little to no role in DC differentiation and function and that the protective effect of PARP-1 inhibition against asthma is associated with a prevention of DC migration to the lung through a reduction in VCAM-1 expression. Given the current use of PARP inhibitors (e.g., olaparib) in the clinic, the present results may be of interest for the relevant therapies.


Asunto(s)
Asma/metabolismo , Células Dendríticas/metabolismo , Pulmón/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Animales , Citometría de Flujo , Ratones , Ratones Mutantes , Poli(ADP-Ribosa) Polimerasa-1/genética , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT5/metabolismo , Factor de Transcripción STAT6/metabolismo
6.
J Biol Chem ; 290(13): 8067-80, 2015 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-25645911

RESUMEN

Glioblastoma is one of the most aggressive brain tumors. We have previously found up-regulation of growth differentiation factor 15 (GDF15) in glioblastoma cells treated with the anticancer agent fenofibrate. Sequence analysis of GDF15 revealed the presence of a microRNA, miR-3189, in the single intron. We then asked whether miR-3189 was expressed in clinical samples and whether it was functional in glioblastoma cells. We found that expression of miR-3189-3p was down-regulated in astrocytoma and glioblastoma clinical samples compared with control brain tissue. In vitro, the functionality of miR-3189-3p was tested by RNA-binding protein immunoprecipitation, and miR-3189-3p coimmunoprecipitated with Argonaute 2 together with two of its major predicted gene targets, the SF3B2 splicing factor and the guanine nucleotide exchange factor p63RhoGEF. Overexpression of miR-3189-3p resulted in a significant inhibition of cell proliferation and migration through direct targeting of SF3B2 and p63RhoGEF, respectively. Interestingly, miR-3189-3p levels were increased by treatment of glioblastoma cells with fenofibrate, a lipid-lowering drug with multiple anticancer activities. The attenuated expression of miR-3189-3p in clinical samples paralleled the elevated expression of SF3B2, which could contribute to the activation of SF3B2 growth-promoting pathways in these tumors. Finally, miR-3189-3p-mediated inhibition of tumor growth in vivo further supported the function of this microRNA as a tumor suppressor.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , MicroARNs/genética , Animales , Secuencia de Bases , Sitios de Unión , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Femenino , Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , Glioblastoma/genética , Glioblastoma/patología , Factor 15 de Diferenciación de Crecimiento/genética , Factor 15 de Diferenciación de Crecimiento/metabolismo , Humanos , Ratones Desnudos , Trasplante de Neoplasias , Interferencia de ARN , Factores de Empalme de ARN , Proteínas de Unión al ARN/biosíntesis , Proteínas de Unión al ARN/genética , Factores de Intercambio de Guanina Nucleótido Rho/biosíntesis , Factores de Intercambio de Guanina Nucleótido Rho/genética
7.
Clin Sci (Lond) ; 129(11): 951-62, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26205779

RESUMEN

Our laboratory established a role for poly(ADP-ribose)polymerase (PARP) in asthma. To increase the clinical significance of our studies, it is imperative to demonstrate that PARP is actually activated in human asthma, to examine whether a PARP inhibitor approved for human testing such as olaparib blocks already-established chronic asthma traits in response to house dust mite (HDM), a true human allergen, in mice and to examine whether the drug modulates human cluster of differentiation type 4 (CD4(+)) T-cell function. To conduct the study, human lung specimens and peripheral blood mononuclear cells (PBMCs) and a HDM-based mouse asthma model were used. Our results show that PARP is activated in PBMCs and lung tissues of asthmatics. PARP inhibition by olaparib or gene knockout blocked established asthma-like traits in mice chronically exposed to HDM including airway eosinophilia and hyper-responsiveness. These effects were linked to a marked reduction in T helper 2 (Th2) cytokine production without a prominent effect on interferon (IFN)-γ or interleukin (IL)-10. PARP inhibition prevented HDM-induced increase in overall cellularity, weight and CD4(+) T-cell population in spleens of treated mice whereas it increased the T-regulatory cell population. In CD3/CD28-stimulated human CD4 (+)T-cells, olaparib treatment reduced Th2 cytokine production potentially by modulating GATA binding protein-3 (gata-3)/IL-4 expression while moderately affecting T-cell proliferation. PARP inhibition inconsistently increased IL-17 in HDM-exposed mice and CD3/CD28-stimulated CD4(+) T cells without a concomitant increase in factors that can be influenced by IL-17. In the present study, we provide evidence for the first time that PARP-1 is activated in human asthma and that its inhibition is effective in blocking established asthma in mice.


Asunto(s)
Antialérgicos/farmacología , Antiasmáticos/farmacología , Antígenos Dermatofagoides , Asma/prevención & control , Pulmón/efectos de los fármacos , Ftalazinas/farmacología , Piperazinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Animales , Asma/enzimología , Asma/inmunología , Asma/fisiopatología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Citocinas/metabolismo , Modelos Animales de Enfermedad , Activación Enzimática , Humanos , Mediadores de Inflamación/metabolismo , Pulmón/enzimología , Pulmón/inmunología , Pulmón/fisiopatología , Activación de Linfocitos/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/deficiencia , Poli(ADP-Ribosa) Polimerasas/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal/efectos de los fármacos , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/enzimología , Linfocitos T Reguladores/inmunología , Células Th2/efectos de los fármacos , Células Th2/enzimología , Células Th2/inmunología
8.
Int J Cancer ; 134(12): 2853-64, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24259296

RESUMEN

The accumulation of myeloid-derived suppressor cells (MDSC) in tumor-bearing hosts is a hallmark of malignancy-associated inflammation and a major mediator for the induction of T cell suppression in cancer. MDSC can be divided phenotypically into granulocytic (G-MDSC) and monocytic (Mo-MDSC) subgroups. Several mechanisms mediate the induction of T cell anergy by MDSC; however, the specific role of these pathways in the inhibitory activity of MDSC subpopulations remains unclear. Therefore, we aimed to determine the effector mechanisms by which subsets of tumor-infiltrating MDSC block T cell function. We found that G-MDSC had a higher ability to impair proliferation and expression of effector molecules in activated T cells, as compared to Mo-MDSC. Interestingly, both MDSC subgroups inhibited T cells through nitric oxide (NO)-related pathways, but expressed different effector inhibitory mechanisms. Specifically, G-MDSC impaired T cells through the production of peroxynitrites (PNT), while Mo-MDSC suppressed by the release of NO. The production of PNT in G-MDSC depended on the expression of gp91(phox) and endothelial NO synthase (eNOS), while inducible NO synthase (iNOS) mediated the generation of NO in Mo-MDSC. Deletion of eNOS and gp91(phox) or scavenging of PNT blocked the suppressive function of G-MDSC and induced anti-tumoral effects, without altering Mo-MDSC inhibitory activity. Furthermore, NO-scavenging or iNOS knockdown prevented Mo-MDSC function, but did not affect PNT production or suppression by G-MDSC. These results suggest that MDSC subpopulations utilize independent effector mechanisms to regulate T cell function. Inhibition of these pathways is expected to specifically block MDSC subsets and overcome immune suppression in cancer.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Granulocitos/inmunología , Monocitos/inmunología , Óxido Nítrico/metabolismo , Ácido Peroxinitroso/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Femenino , Humanos , Activación de Linfocitos/inmunología , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , NADPH Oxidasa 2 , NADPH Oxidasas/genética , Neoplasias/inmunología , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo III/biosíntesis , Óxido Nítrico Sintasa de Tipo III/genética , Nitritos/metabolismo , Ácido Peroxinitroso/biosíntesis , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/inmunología
9.
Cells ; 13(20)2024 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-39451254

RESUMEN

Potassium ions (K+) are critical electrolytes that regulate multiple functions in immune cells. Recent studies have shown that the elevated concentration of extracellular potassium in the tumor interstitial fluid limits T cell effector function and suppresses the anti-tumor capacity of tumor-associated macrophages (TAMs). The effect of excess potassium on the biology of myeloid-derived suppressor cells (MDSCs), another important immune cell component of the tumor microenvironment (TME), is unknown. Here, we present data showing that increased concentrations of potassium chloride (KCl), as the source of K+ ions, facilitate autophagy by increasing the expression of the autophagosome marker LC3ß. Simultaneously, excess potassium ions significantly decrease the expression of arginase I (Arg I) and inducible nitric oxide synthase (iNOS) without reducing the ability of MDSCs to suppress T cell proliferation. Further investigation reveals that excess K+ ions decrease the expression of the transcription factor C/EBP-ß and alter the expression of phosphorylated kinases. While excess K+ ions downregulated the expression levels of phospho-AMPKα (pAMPKα), it increased the levels of pAKT and pERK. Additionally, potassium increased mitochondrial respiration as measured by the oxygen consumption rate (OCR). Interestingly, all these alterations induced by K+ ions were abolished by the autophagy inhibitor 3-methyladenine (3-MA). Our results suggest that hyperosmotic stress caused by excess K+ ions regulate the mitochondrial respiration and signaling pathways in MDSCs to trigger the process of autophagy to support MDSCs' immunosuppressive function by mechanisms independent of Arg I and iNOS. Overall, our in vitro and ex vivo findings offer valuable insights into the adaptations of MDSCs within the K+ ion-rich TME, which has important implications for MDSCs-targeted therapies.


Asunto(s)
Arginasa , Autofagia , Células Supresoras de Origen Mieloide , Óxido Nítrico Sintasa de Tipo II , Potasio , Arginasa/metabolismo , Autofagia/efectos de los fármacos , Animales , Células Supresoras de Origen Mieloide/metabolismo , Células Supresoras de Origen Mieloide/efectos de los fármacos , Potasio/metabolismo , Ratones , Óxido Nítrico Sintasa de Tipo II/metabolismo , Ratones Endogámicos C57BL , Linfocitos T/metabolismo , Linfocitos T/inmunología , Linfocitos T/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos
10.
Cell Immunol ; 282(1): 38-43, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23665673

RESUMEN

Tobacco smoking predisposes the development of diseases characterized by chronic inflammation and T cell dysfunction. In this study, we aimed to determine the direct effects of cigarette smoke on primary T cells and to identify the corresponding molecular mediators. Activated T cells cultured in the presence of cigarette smoke extract (CSE) displayed a dose-dependent decrease in cell proliferation, which associated with the induction of cellular apoptosis. T cell apoptosis by CSE was independent of caspases and mediated through reactive oxygen and nitrogen species endogenously contained within CSE. Additional results showed that exposure of T cells to CSE induced phosphorylation of the stress mediator eukaryotic-translation-initiation-factor 2 alpha (eIF2α). Inhibition of the phosphorylation of eIF2α in T cells prevented the cellular apoptosis induced by CSE. Altogether, the results show the direct effects of CSE on T cells, which advance in the understanding of how cigarette smoking promotes chronic inflammation and immune dysfunction.


Asunto(s)
Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Medio de Cultivo Libre de Suero/farmacología , Nicotiana/química , Humo , Linfocitos T/efectos de los fármacos , Animales , Western Blotting , Células Cultivadas , Medio de Cultivo Libre de Suero/química , Relación Dosis-Respuesta a Droga , Factor 2 Eucariótico de Iniciación/metabolismo , Citometría de Flujo , Humanos , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación/efectos de los fármacos , Especies Reactivas de Oxígeno/química , Especies Reactivas de Oxígeno/metabolismo , Linfocitos T/citología , Linfocitos T/inmunología
11.
Front Neurol ; 14: 1155479, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37144000

RESUMEN

Mild Traumatic Brain Injury (mild TBI)/concussion is a common sports injury, especially common in football players. Repeated concussions are thought to lead to long-term brain damage including chronic traumatic encephalopathy (CTE). With the worldwide growing interest in studying sport-related concussion the search for biomarkers for early diagnosis and progression of neuronal injury has also became priority. MicroRNAs are short, non-coding RNAs that regulate gene expression post-transcriptionally. Due to their high stability in biological fluids, microRNAs can serve as biomarkers in a variety of diseases including pathologies of the nervous system. In this exploratory study, we have evaluated changes in the expression of selected serum miRNAs in collegiate football players obtained during a full practice and game season. We found a miRNA signature that can distinguish with good specificity and sensitivity players with concussions from non-concussed players. Furthermore, we found miRNAs associated with the acute phase (let-7c-5p, miR-16-5p, miR-181c-5p, miR-146a-5p, miR-154-5p, miR-431-5p, miR-151a-5p, miR-181d-5p, miR-487b-3p, miR-377-3p, miR-17-5p, miR-22-3p, and miR-126-5p) and those whose changes persist up to 4 months after concussion (miR-17-5p and miR-22-3p).

12.
Cancers (Basel) ; 15(15)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37568775

RESUMEN

BACKGROUND: The efficacy of CB-103 was evaluated in preclinical models of both ER+ and TNBC. Furthermore, the therapeutic efficacy of combining CB-103 with fulvestrant in ER+ BC and paclitaxel in TNBC was determined. METHODS: CB-103 was screened in combination with a panel of anti-neoplastic drugs. We evaluated the anti-tumor activity of CB-103 with fulvestrant in ESR1-mutant (Y537S), endocrine-resistant BC xenografts. In the same model, we examined anti-CSC activity in mammosphere formation assays for CB-103 alone or in combination with fulvestrant or palbociclib. We also evaluated the effect of CB-103 plus paclitaxel on primary tumors and CSC in a GSI-resistant TNBC model HCC1187. Comparisons between groups were performed with a two-sided unpaired Students' t-test. A one-way or two-way ANOVA followed by Tukey's post-analysis was performed to analyze the in vivo efficacy study results. THE RESULTS: CB-103 showed synergism with fulvestrant in ER+ cells and paclitaxel in TNBC cells. CB-103 combined with fulvestrant or paclitaxel potently inhibited mammosphere formation in both models. Combination of CB-103 and fulvestrant significantly reduced tumor volume in an ESR1-mutant, the endocrine-resistant BC model. In a GSI-resistant TNBC model, CB-103 plus paclitaxel significantly delayed tumor growth compared to paclitaxel alone. CONCLUSION: our data indicate that CB-103 is an attractive candidate for clinical investigation in endocrine-resistant, recurrent breast cancers with biomarker-confirmed Notch activity in combination with SERDs and/or CDKis and in TNBCs with biomarker-confirmed Notch activity in combination with taxane-containing chemotherapy regimens.

13.
Front Immunol ; 14: 1244159, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37901240

RESUMEN

Introduction: Triple-negative breast cancer (TNBC) comprises a heterogeneous group of clinically aggressive tumors with high risk of recurrence and metastasis. Current pharmacological treatment options remain largely limited to chemotherapy. Despite promising results, the efficacy of immunotherapy and chemo-immunotherapy in TNBC remains limited. There is strong evidence supporting the involvement of Notch signaling in TNBC progression. Expression of Notch1 and its ligand Jagged1 correlate with poor prognosis. Notch inhibitors, including g-secretase inhibitors (GSIs), are quite effective in preclinical models of TNBC. However, the success of GSIs in clinical trials has been limited by their intestinal toxicity and potential for adverse immunological effects, since Notch plays key roles in T-cell activation, including CD8 T-cells in tumors. Our overarching goal is to replace GSIs with agents that lack their systemic toxicity and ideally, do not affect tumor immunity. We identified sulindac sulfide (SS), the active metabolite of FDA-approved NSAID sulindac, as a potential candidate to replace GSIs. Methods: We investigated the pharmacological and immunotherapeutic properties of SS in TNBC models in vitro, ex-vivo and in vivo. Results: We confirmed that SS, a known γ-secretase modulator (GSM), inhibits Notch1 cleavage in TNBC cells. SS significantly inhibited mammosphere growth in all human and murine TNBC models tested. In a transplantable mouse TNBC tumor model (C0321), SS had remarkable single-agent anti-tumor activity and eliminated Notch1 protein expression in tumors. Importantly, SS did not inhibit Notch cleavage in T- cells, and the anti-tumor effects of SS were significantly enhanced when combined with a-PD1 immunotherapy in our TNBC organoids and in vivo. Discussion: Our data support further investigation of SS for the treatment of TNBC, in conjunction with chemo- or -chemo-immunotherapy. Repurposing an FDA-approved, safe agent for the treatment of TNBC may be a cost-effective, rapidly deployable therapeutic option for a patient population in need of more effective therapies.


Asunto(s)
Sulindac , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Sulindac/farmacología , Sulindac/uso terapéutico , Secretasas de la Proteína Precursora del Amiloide , Neoplasias de la Mama Triple Negativas/metabolismo , Antiinflamatorios no Esteroideos/uso terapéutico , Modelos Animales de Enfermedad
14.
J Immunol ; 185(9): 5198-204, 2010 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-20889542

RESUMEN

Myeloid-derived suppressor cells are a major mechanism of tumor-induced immune suppression in cancer. Arginase I-producing myeloid-derived suppressor cells deplete l-arginine (L-Arg) from the microenvironment, which arrests T cells in the G(0)-G(1) phase of the cell cycle. This cell cycle arrest correlated with an inability to increase cyclin D3 expression resulting from a decreased mRNA stability and an impaired translation. We sought to determine the mechanisms leading to a decreased cyclin D3 mRNA stability in activated T cells cultured in medium deprived of L-Arg. Results show that cyclin D3 mRNA instability induced by L-Arg deprivation is dependent on response elements found in its 3'-untranslated region (UTR). RNA-binding protein HuR was found to be increased in T cells cultured in medium with L-Arg and bound to the 3'-untranslated region of cyclin D3 mRNA in vitro and endogenously in activated T cells. Silencing of HuR expression significantly impaired cyclin D3 mRNA stability. L-Arg deprivation inhibited the expression of HuR through a global arrest in de novo protein synthesis, but it did not affect its mRNA expression. This alteration is dependent on the expression of the amino acid starvation sensor general control nonderepressible 2 kinase. These data contribute to an understanding of a central mechanism by which diseases characterized by increased arginase I production may cause T cell dysfunction.


Asunto(s)
Antígenos de Superficie/biosíntesis , Arginina/deficiencia , Ciclina D3/genética , Estabilidad del ARN/fisiología , Proteínas de Unión al ARN/biosíntesis , Linfocitos T/inmunología , Regiones no Traducidas 3'/genética , Regiones no Traducidas 3'/inmunología , Arginina/inmunología , Western Blotting , Proteínas ELAV , Proteína 1 Similar a ELAV , Ensayo de Cambio de Movilidad Electroforética , Expresión Génica/genética , Expresión Génica/inmunología , Silenciador del Gen , Humanos , Inmunoprecipitación , Activación de Linfocitos/inmunología , ARN Mensajero , Elementos de Respuesta/genética , Elementos de Respuesta/inmunología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Linfocitos T/metabolismo , Transfección
15.
Oncogene ; 41(47): 5076-5091, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36243802

RESUMEN

Treatment of patients with triple-negative breast cancer (TNBC) has been challenging due to the absence of well-defined molecular targets and the highly invasive and proliferative nature of TNBC cells. Current treatments against TNBC have shown little promise due to high recurrence rate in patients. Consequently, there is a pressing need for novel and efficacious therapies against TNBC. Here, we report the discovery of a novel small molecule inhibitor (NSC33353) with potent anti-tumor activity against TNBC cells. The anti-proliferative effects of this small molecule inhibitor were determined using 2D and 3D cell proliferation assays. We found that NSC33353 significantly reduces the proliferation of TNBC cells in these assays. Using proteomics, next generation sequencing (NGS), and gene enrichment analysis, we investigated global regulatory pathways affected by this compound in TNBC cells. Proteomics data indicate a significant metabolic reprograming affecting both glycolytic enzymes and energy generation through oxidative phosphorylation. Subsequently, using metabolic (Seahorse) and enzymatic assays, we validated our proteomics and NGS analysis findings. Finally, we showed the inhibitory and anti-tumor effects of this small molecule in vitro and confirmed its inhibitory activity in vivo. Doxorubicin is one of the most effective agents in the treatment of TNBC and resistance to this drug has been a major problem. We show that the combination of NSC33353 and doxorubicin suppresses the growth of TNBC cells synergistically, suggesting that NSC33353 enhances TNBC sensitivity to doxorubicin. In summary, our data indicate that the small molecule inhibitor, NSC33353, exhibits anti-tumor activity in TNBC cells, and works in a synergistic fashion with a well-known chemotherapeutic agent.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/genética , Línea Celular Tumoral , Proliferación Celular , Apoptosis , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
16.
EBioMedicine ; 77: 103910, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35248994

RESUMEN

BACKGROUND: Low-density neutrophils (LDN) are increased in several inflammatory diseases and may also play a role in the low-grade chronic inflammation associated with obesity. Here we explored their role in obesity, determined their gene signatures, and assessed the effect of bariatric surgery. METHODS: We compared the number, function, and gene expression profiles of circulating LDN in morbidly obese patients (MOP, n=27; body mass index (BMI) > 40 Kg/m2) and normal-weight controls (NWC, n=20; BMI < 25 Kg/m2) in a case-control study. Additionally, in a prospective longitudinal study, we measured changes in the frequency of LDN after bariatric surgery (n=36) and tested for associations with metabolic and inflammatory parameters. FINDINGS: LDN and inflammatory markers were significantly increased in MOP compared to NWC. Transcriptome analysis showed increased neutrophil-related gene expression signatures associated with inflammation, neutrophil activation, and immunosuppressive function. However, LDN did not suppress T cells proliferation and produced low levels of reactive oxygen species (ROS). Circulating LDN in MOP significantly decreased after bariatric surgery in parallel with BMI, metabolic syndrome, and inflammatory markers. INTERPRETATION: Obesity increases LDN displaying an inflammatory gene signature. Our results suggest that LDN may represent a neutrophil subset associated with chronic inflammation, a feature of obesity that has been previously associated with the appearance and progression of co-morbidities. Furthermore, bariatric surgery, as an efficient therapy for severe obesity, reduces LDN in circulation and improves several components of the metabolic syndrome supporting its recognized anti-inflammatory and beneficial metabolic effects. FUNDING: This work was supported in part by grants from the National Institutes of Health (NIH; 5P30GM114732-02, P20CA233374 - A. Ochoa and L. Miele), Pennington Biomedical NORC (P30DK072476 - E. Ravussin & LSU-NO Stanley S. Scott Cancer Center and Louisiana Clinical and Translational Science Center (LACaTS; U54-GM104940 - J. Kirwan).


Asunto(s)
Cirugía Bariátrica , Obesidad Mórbida , Cirugía Bariátrica/métodos , Estudios de Casos y Controles , Humanos , Estudios Longitudinales , Neutrófilos/metabolismo , Obesidad Mórbida/complicaciones , Obesidad Mórbida/metabolismo , Obesidad Mórbida/cirugía , Estudios Prospectivos
17.
Mol Cancer Ther ; 20(7): 1295-1304, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33879557

RESUMEN

Immune-checkpoint inhibitor (ICI) therapy has been widely used to treat different human cancers, particularly advanced solid tumors. However, clinical studies have reported that ICI immunotherapy benefits only ∼15% of patients with colorectal cancer, specifically those with tumors characterized by microsatellite instability (MSI), a molecular marker of defective DNA mismatch repair (dMMR). For the majority of patients with colorectal cancer who carry proficient MMR (pMMR), ICIs have shown little clinical benefit. In this study, we examined the efficacy of sulindac to enhance the response of pMMR colorectal cancer to anti-PD-L1 immunotherapy. We utilized a CT26 syngeneic mouse tumor model to compare the inhibitory effects of PD-L1 antibody (Ab), sulindac, and their combination on pMMR colorectal cancer tumor growth. We found that mice treated with combination therapy showed a significant reduction in tumor volume, along with increased infiltration of CD8+ T lymphocytes in the tumor tissues. We also demonstrated that sulindac could downregulate PD-L1 by blocking NF-κB signaling, which in turn led to a decrease in exosomal PD-L1. Notably, PD-L1 Ab can be bound and consumed by exosomal PD-L1 in the blood circulation. Therefore, in combination therapy, sulindac downregulating PD-L1 leads to increased availability of PD-L1 Ab, which potentially improves the overall efficacy of anti-PD-L1 therapy. We also show that low-dose sulindac does not appear to have a systemic inhibitory effect on prostaglandin E2 (PGE2). In conclusion, our findings provide unique insights into the mechanism of action and efficacy for sulindac as an immunomodulatory agent in combination with anti-PD-L1 therapy for the treatment of pMMR colorectal cancer.


Asunto(s)
Antineoplásicos Inmunológicos/farmacología , Antineoplásicos/farmacología , Antígeno B7-H1/antagonistas & inhibidores , Reparación de la Incompatibilidad de ADN/efectos de los fármacos , Inhibidores de Puntos de Control Inmunológico/farmacología , Sulindac/farmacología , Animales , Antineoplásicos Inmunológicos/uso terapéutico , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/etiología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Modelos Animales de Enfermedad , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Ratones , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Carga Tumoral/efectos de los fármacos
18.
Front Immunol ; 12: 785905, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34917094

RESUMEN

Persons living with HIV (PLWH) are at higher risk of developing secondary illnesses than their uninfected counterparts, suggestive of a dysfunctional immune system in these individuals. Upon exposure to pathogens, monocytes undergo epigenetic remodeling that results in either a trained or a tolerant phenotype, characterized by hyper-responsiveness or hypo-responsiveness to secondary stimuli, respectively. We utilized CD14+ monocytes from virally suppressed PLWH and healthy controls for in vitro analysis following polarization of these cells toward a pro-inflammatory monocyte-derived macrophage (MDM) phenotype. We found that in PLWH-derived MDMs, pro-inflammatory signals (TNFA, IL6, IL1B, miR-155-5p, and IDO1) dominate over negative feedback signals (NCOR2, GSN, MSC, BIN1, and miR-146a-5p), favoring an abnormally trained phenotype. The mechanism of this reduction in negative feedback involves the attenuated expression of IKZF1, a transcription factor required for de novo synthesis of RELA during LPS-induced inflammatory responses. Furthermore, restoring IKZF1 expression in PLWH-MDMs partially reinstated expression of negative regulators of inflammation and lowered the expression of pro-inflammatory cytokines. Overall, this mechanism may provide a link between dysfunctional immune responses and susceptibility to co-morbidities in PLWH with low or undetectable viral load.


Asunto(s)
Susceptibilidad a Enfermedades/inmunología , Infecciones por VIH/inmunología , Factor de Transcripción Ikaros/metabolismo , Macrófagos/inmunología , Factor de Transcripción ReIA/metabolismo , Fármacos Anti-VIH/administración & dosificación , Estudios de Casos y Controles , Citocinas/metabolismo , Retroalimentación Fisiológica , Femenino , Regulación de la Expresión Génica/inmunología , VIH/inmunología , VIH/aislamiento & purificación , Infecciones por VIH/sangre , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , Voluntarios Sanos , Humanos , Inflamación/sangre , Inflamación/inmunología , Lipopolisacáridos/inmunología , Macrófagos/metabolismo , Masculino , Persona de Mediana Edad , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Factor de Transcripción ReIA/genética , Carga Viral/efectos de los fármacos , Carga Viral/inmunología
19.
J Immunother Cancer ; 9(1)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33495297

RESUMEN

BACKGROUND: Poly(ADP-ribose) polymerase (PARP) inhibitors (eg, olaparib) are effective against BRCA-mutated cancers at/near maximum tolerated doses by trapping PARP-1 on damaged chromatin, benefitting only small patient proportions. The benefits of targeting non-DNA repair aspects of PARP with metronomic doses remain unexplored. METHODS: Colon epithelial cells or mouse or human bone marrow (BM)-derived-myeloid-derived suppressor cells (MDSCs) were stimulated to assess the effect of partial PARP-1 inhibition on inflammatory gene expression or immune suppression. Mice treated with azoxymethane/four dextran-sulfate-sodium cycles or APCMin/+ mice bred into PARP-1+/- or treated with olaparib were used to examine the role of PARP-1 in colitis-induced or spontaneous colon cancer, respectively. Syngeneic MC-38 cell-based (microsatellite instability, MSIhigh) or CT-26 cell-based (microsatellite stable, MSS) tumor models were used to assess the effects of PARP inhibition on host responses and synergy with anti-Programmed cell Death protein (PD)-1 immunotherapy. RESULTS: Partial PARP-1 inhibition, via gene heterozygosity or a moderate dose of olaparib, protected against colitis-mediated/APCMin -mediated intestinal tumorigenesis and APCMin -associated cachexia, while extensive inhibition, via gene knockout or a high dose of olaparib, was ineffective or aggravating. A sub-IC50-olaparib dose or PARP-1 heterozygosity was sufficient to block tumorigenesis in a syngeneic colon cancer model by modulating the suppressive function, but not intratumoral migration or differentiation, of MDSCs, with concomitant increases in intratumoral T cell function and cytotoxicity, as assessed by granzyme-B/interferon-γ levels. Adoptive transfer of WT-BM-MDSCs abolished the protective effects of PARP-1 heterozygosity. The mechanism of MDSC modulation involved a reduction in arginase-1/inducible nitric oxide synthase/cyclo-oxygenase-2, but independent of PARP-1 trapping on chromatin. Although a high-concentration olaparib or the high-trapping PARP inhibitor, talazoparib, activated stimulator of interferon gene (STING) in BRCA-proficient cells and induced DNA damage, sub-IC50 concentrations of either drug failed to induce activation of the dsDNA break sensor. STING expression appeared dispensable for MDSC suppressive function and was not strictly required for olaparib-mediated effects. Ironically, STING activation blocked human and mouse MDSC function with no additive effects with olaparib. A metronomic dose of olaparib was highly synergistic with anti-PD-1-based immunotherapy, leading to eradication of MSIhigh or reduction of MSS tumors in mice. CONCLUSIONS: These results support a paradigm-shifting concept that expands the utility of PARP inhibitor and encourage testing metronomic dosing of PARP inhibitor to enhance the efficacy of checkpoint inhibitor-based immunotherapies in cancer.


Asunto(s)
Colitis/complicaciones , Neoplasias del Colon/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Ftalazinas/administración & dosificación , Piperazinas/administración & dosificación , Inhibidores de Poli(ADP-Ribosa) Polimerasas/administración & dosificación , Administración Metronómica , Animales , Azoximetano/efectos adversos , Línea Celular Tumoral , Colitis/inducido químicamente , Neoplasias del Colon/etiología , Sulfato de Dextran/efectos adversos , Sinergismo Farmacológico , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Ratones , Células Supresoras de Origen Mieloide/metabolismo , Ftalazinas/farmacología , Piperazinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
20.
medRxiv ; 2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33791717

RESUMEN

COVID-19 ranges from asymptomatic in 35% of cases to severe in 20% of patients. Differences in the type and degree of inflammation appear to determine the severity of the disease. Recent reports show an increase in circulating monocytic-myeloid-derived suppressor cells (M-MDSC) in severe COVID 19, that deplete arginine but are not associated with respiratory complications. Our data shows that differences in the type, function and transcriptome of Granulocytic-MDSC (G-MDSC) may in part explain the severity COVID-19, in particular the association with pulmonary complications. Large infiltrates by Arginase 1 + G-MDSC (Arg + G-MDSC), expressing NOX-1 and NOX-2 (important for production of reactive oxygen species) were found in the lungs of patients who died from COVID-19 complications. Increased circulating Arg + G-MDSC depleted arginine, which impaired T cell receptor and endothelial cell function. Transcriptomic signatures of G-MDSC from patients with different stages of COVID-19, revealed that asymptomatic patients had increased expression of pathways and genes associated with type I interferon (IFN), while patients with severe COVID-19 had increased expression of genes associated with arginase production, and granulocyte degranulation and function. These results suggest that asymptomatic patients develop a protective type I IFN response, while patients with severe COVID-19 have an increased inflammatory response that depletes arginine, impairs T cell and endothelial cell function, and causes extensive pulmonary damage. Therefore, inhibition of arginase-1 and/or replenishment of arginine may be important in preventing/treating severe COVID-19.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA