Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chempluschem ; 88(3): e202200441, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36802130

RESUMEN

While synthesis-properties-performance correlations are being studied for organophosphonic acid grafted TiO2 , their stability and the impact of the exposure conditions on possible changes in the interfacial surface chemistry remain unexplored. Here, the impact of different ageing conditions on the evolution of the surface properties of propyl- and 3-aminopropylphosphonic acid grafted mesoporous TiO2 over a period of 2 years is reported, using solid-state 31 P and 13 C NMR, ToF-SIMS and EPR as main techniques. In humid conditions under ambient light exposure, PA grafted TiO2 surfaces initiate and facilitate photo-induced oxidative reactions, resulting in the formation of phosphate species and degradation of the grafted organic group with a loss of carbon content ranging from 40 to 60 wt %. By revealing its mechanism, solutions were provided to prevent degradation. This work provides valuable insights for the broad community in choosing optimal exposure/storage conditions that extend the lifetime and improve the materials' performance, positively impacting sustainability.

2.
ACS Appl Mater Interfaces ; 14(25): 29345-29356, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35714361

RESUMEN

Surface functionalization of complex three-dimensional (3D) porous architectures has not been widely investigated despite their potential in different application domains. In this work, silanization was performed in silica 3D-printed porous structures, and the homogeneity of functional groups within the architecture was investigated by comparing the extent of the functionalization in the walls and core of the monolith. A silica ink was used for direct ink writing (DIW) to shape fibers and monoliths with different architectures and stacking designs. The surfaces of the fibers and monoliths were functionalized with 3-aminopropyl(triethoxysilane) (APTES) using different reaction conditions. The nature of the functional groups on the surface and the presence of RSiO1.5 bonds were identified by solid-state 13C-NMR, 29Si-NMR, and by ξ-potential measurements. Elemental analysis was used to quantify the concentration of bonded APTES in the core and walls of the monolith. The availability and hydrolytic stability of the introduced amine group on fibers were evaluated using the adsorption of PdCl42- ions within the pH range of 2-5. The study found that geometries with interfiber distances above 250 µm are homogeneously functionalized with amine groups. As the interfiber distance of the monolith decreases, a significantly lower density of amine groups is detected in the core of the monolith. The determination of the homogeneity of 3D-printed monoliths makes this work relevant as it provides the limits of functionalization carried out in stirred batch reactors for geometrically defined structures produced from a 3D-printing process.

3.
ACS Omega ; 7(49): 45409-45421, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36530305

RESUMEN

Amino-alkylphosphonic acid-grafted TiO2 materials are of increasing interest in a variety of applications such as metal sorption, heterogeneous catalysis, CO2 capture, and enzyme immobilization. To date, systematic insights into the synthesis-properties-performance correlation are missing for such materials, albeit giving important know-how towards their applicability and limitations. In this work, the impact of the chain length and modification conditions (concentration and temperature) of amino-alkylphosphonic acid-grafted TiO2 on the surface properties and adsorption performance of palladium is studied. Via grafting with aminomethyl-, 3-aminopropyl-, and 6-aminohexylphosphonic acid, combined with the spectroscopic techniques (DRIFT, 31P NMR, XPS) and zeta potential measurements, differences in surface properties between the C1, C3, and C6 chains are revealed. The modification degree decreases with increasing chain length under the same synthesis conditions, indicative of folded grafted groups that sterically shield an increasing area of binding sites with increasing chain length. Next, all techniques confirm the different surface interactions of a C1 chain compared to a C3 or C6 chain. This is in line with palladium adsorption experiments, where only for a C1 chain, the adsorption efficiency is affected by the precursor concentration used for modification. The absence of a straightforward correlation between the number of free NH2 groups and the adsorption capacity for the different chain lengths indicates that other chain-length-specific surface interactions are controlling the adsorption performance. The increasing pH stability in the order of C1 < C3 < C6 can possibly be associated to a higher fraction of inaccessible hydrophilic sites due to the presence of folded structures. Lastly, the comparison of adsorption performance and pH stability with 3-aminopropyl(triethoxysilane)-grafted TiO2 reveals the applicability of both grafting methods depending on the envisaged pH during sorption.

4.
RSC Adv ; 12(55): 36046-36062, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36545072

RESUMEN

Modification of metal oxides with organophosphonic acids (PAs) provides the ability to control and tailor the surface properties. The metal oxide phosphonic acid bond (M-O-P) is known to be stable under harsh conditions, making PAs a promising candidate for the recovery of metals from complex acidic leachates. The thiol functional group is an excellent regenerable scavenging group for these applications. However, the research on organophosphonic acid grafting with thiol groups is very limited. In this study, four different metal sorbent materials were designed with different thiol surface coverages. An aqueous-based grafting of 3-mercaptopropylphosphonic acid (3MPPA) on mesoporous TiO2 was employed. Surface grafted thiol groups could be obtained in the range from 0.9 to 1.9 groups per nm2. The different obtained surface properties were studied and correlated to the Pd adsorption performance. High Pd/S adsorption efficiencies were achieved, indicating the presence of readily available sorption sites. A large difference in their selectivity towards Pd removal from a spend automotive catalyst leachate was observed due to the co-adsorption of Fe on the titania support. The highest surface coverage showed the highest selectivity (K d: 530 mL g-1) and adsorption capacity (Q max: 0.32 mmol g-1) towards Pd, while strongly reducing the co-adsorption of Fe on remaining TiO2 sites.

5.
RSC Adv ; 9(33): 18734-18746, 2019 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35516852

RESUMEN

A novel adsorbent was designed for selective recovery of cobalt(ii) from synthetic binary cobalt(ii)-nickel(ii) and cobalt(ii)-manganese(ii) solutions, a synthetic multi-element solution and a real aqueous waste stream from the petrochemical sector. The adsorbent consisted of shaped activated carbon-alginate spheres impregnated with Cyanex 272. The synthesis was followed by characterisation using SEM, infrared spectroscopy, BET analysis and elemental analysis. Good selectivity for cobalt(ii) over nickel(ii) could be achieved during adsorption, while this was not the case for cobalt(ii) over manganese(ii). Cobalt(ii) and manganese(ii) were therefore fully adsorbed and stripped using a dilute sulphuric acid solution. The adsorbent was shown to be reusable in a column setup. Finally, the adsorbent material was used for the purification of a real aqueous waste stream from the petrochemical sector.

6.
Water Res ; 93: 195-204, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26905798

RESUMEN

Nanofiltration (NF) membrane fouling by DOM remains a major and poorly understood issue. To acquire a better insight we studied the fouling of the DOM fractions humic acids (HAs) and fulvic acids (FAs), with and without Ca(2+), on native and grafted ceramic NF membranes. Grafting with two methods and three different grafting groups allowed to create a range of membranes with a variety of surface chemistries, and a wide range of surface polarity, much broader than ever used in previous studies. A typical polymer (polyamide) NF membrane was included for comparison. All obtained results reveal that membrane fouling is not determined by membrane hydrophilicity/hydrophobicity as a general and sole criterion, but rather on the whole of the surface chemistry determining the amount and strength of the possible foulant-membrane interactions. As a consequence the effect of inorganic ions on the fouling is also dependent on the surface chemistry. Important new insight in the DOM fouling mechanism was acquired, shedding new light on the state-of-the-art knowledge.


Asunto(s)
Incrustaciones Biológicas , Membranas Artificiales , Compuestos Orgánicos/química , Ultrafiltración/instrumentación , Purificación del Agua/instrumentación , Sustancias Húmicas/análisis , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Químicos , Estructura Molecular , Nylons/química , Soluciones/química , Propiedades de Superficie , Ultrafiltración/métodos , Purificación del Agua/métodos
7.
Water Res ; 104: 242-253, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27538246

RESUMEN

Compared to traditional separation and purification techniques, membrane filtration is particularly beneficial for the treatment of wastewater streams such as pulp and paper mill effluents (PPME), olive oil wastewater (OOWW) and oil/gas produced water (PW). However, severe membrane fouling can be a major issue. In this work, the use of ceramic membranes and the potential for the broad applicability of a recently developed antifouling grafting was evaluated to tackle this issue. To this end, the fouling behavior of native and grafted membranes was tested in the selected difficult wastewater streams, both in dead-end and in cross-flow mode. In addition, the quality of the produced permeate water was determined to assess the overall performance of the investigated membranes for reuse or recycling of the treated wastewater. The obtained results show that grafting significantly enhances the antifouling tendency of the ceramic membranes. Particularly, the membrane grafted with methyl groups using the Grignard technique (MGR), showed in all cases no or negligible fouling as compared to the native membrane. As a consequence, the process flux or filtration capacity of the MGR membrane in cross-flow is always higher and more stable than the native membrane, even though the grafting lowers the pure water flux. Hence, the inert character of the MGR membrane is repeatedly proven and shown to be broadly applicable and generic for anti-fouling, without loss in permeate quality. Moreover, in case of OOWW, the quality of the MGR permeate is even better than that of the native membrane due to its lower fouling. All results can be explained taking into account the physico-chemical properties of foulants and membranes, as shown in previous work. In conclusion, the use of MGR membranes could provide an optimum economical solution for the treatment of the selected challenging wastewaters.


Asunto(s)
Aguas Residuales/química , Purificación del Agua , Cerámica , Filtración , Membranas Artificiales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA