Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Neurosci ; 41(18): 4036-4059, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33731450

RESUMEN

We have previously established that PV+ neurons and Npas1+ neurons are distinct neuron classes in the external globus pallidus (GPe): they have different topographical, electrophysiological, circuit, and functional properties. Aside from Foxp2+ neurons, which are a unique subclass within the Npas1+ class, we lack driver lines that effectively capture other GPe neuron subclasses. In this study, we examined the utility of Kcng4-Cre, Npr3-Cre, and Npy2r-Cre mouse lines (both males and females) for the delineation of GPe neuron subtypes. By using these novel driver lines, we have provided the most exhaustive investigation of electrophysiological studies of GPe neuron subtypes to date. Corroborating our prior studies, GPe neurons can be divided into two statistically distinct clusters that map onto PV+ and Npas1+ classes. By combining optogenetics and machine learning-based tracking, we showed that optogenetic perturbation of GPe neuron subtypes generated unique behavioral structures. Our findings further highlighted the dissociable roles of GPe neurons in regulating movement and anxiety-like behavior. We concluded that Npr3+ neurons and Kcng4+ neurons are distinct subclasses of Npas1+ neurons and PV+ neurons, respectively. Finally, by examining local collateral connectivity, we inferred the circuit mechanisms involved in the motor patterns observed with optogenetic perturbations. In summary, by identifying mouse lines that allow for manipulations of GPe neuron subtypes, we created new opportunities for interrogations of cellular and circuit substrates that can be important for motor function and dysfunction.SIGNIFICANCE STATEMENT Within the basal ganglia, the external globus pallidus (GPe) has long been recognized for its involvement in motor control. However, we lacked an understanding of precisely how movement is controlled at the GPe level as a result of its cellular complexity. In this study, by using transgenic and cell-specific approaches, we showed that genetically-defined GPe neuron subtypes have distinct roles in regulating motor patterns. In addition, the in vivo contributions of these neuron subtypes are in part shaped by the local, inhibitory connections within the GPe. In sum, we have established the foundation for future investigations of motor function and disease pathophysiology.


Asunto(s)
Globo Pálido/citología , Globo Pálido/fisiología , Actividad Motora/fisiología , Neuronas/fisiología , Animales , Ansiedad/psicología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Conducta Animal , Fenómenos Biomecánicos , Fenómenos Electrofisiológicos , Femenino , Aprendizaje Automático , Masculino , Ratones , Ratones Endogámicos C57BL , Red Nerviosa/citología , Red Nerviosa/fisiología , Proteínas del Tejido Nervioso/genética , Optogenética , Canales de Potasio con Entrada de Voltaje/genética , Receptores del Factor Natriurético Atrial/genética
2.
J Neurosci ; 40(41): 7855-7876, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-32868462

RESUMEN

The external globus pallidus (GPe) is a critical node within the basal ganglia circuit. Phasic changes in the activity of GPe neurons during movement and their alterations in Parkinson's disease (PD) argue that the GPe is important in motor control. Parvalbumin-positive (PV+) neurons and Npas1+ neurons are the two principal neuron classes in the GPe. The distinct electrophysiological properties and axonal projection patterns argue that these two neuron classes serve different roles in regulating motor output. However, the causal relationship between GPe neuron classes and movement remains to be established. Here, by using optogenetic approaches in mice (both males and females), we showed that PV+ neurons and Npas1+ neurons promoted and suppressed locomotion, respectively. Moreover, PV+ neurons and Npas1+ neurons are under different synaptic influences from the subthalamic nucleus (STN). Additionally, we found a selective weakening of STN inputs to PV+ neurons in the chronic 6-hydroxydopamine lesion model of PD. This finding reinforces the idea that the reciprocally connected GPe-STN network plays a key role in disease symptomatology and thus provides the basis for future circuit-based therapies.SIGNIFICANCE STATEMENT The external pallidum is a key, yet an understudied component of the basal ganglia. Neural activity in the pallidum goes awry in neurologic diseases, such as Parkinson's disease. While this strongly argues that the pallidum plays a critical role in motor control, it has been difficult to establish the causal relationship between pallidal activity and motor function/dysfunction. This was in part because of the cellular complexity of the pallidum. Here, we showed that the two principal neuron types in the pallidum have opposing roles in motor control. In addition, we described the differences in their synaptic influence. Importantly, our research provides new insights into the cellular and circuit mechanisms that explain the hypokinetic features of Parkinson's disease.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Globo Pálido/fisiología , Red Nerviosa/fisiología , Proteínas del Tejido Nervioso/genética , Neuronas/fisiología , Parvalbúminas/genética , Animales , Axones/patología , Fenómenos Electrofisiológicos , Femenino , Globo Pálido/citología , Locomoción/fisiología , Masculino , Ratones , Red Nerviosa/citología , Optogenética , Núcleo Subtalámico/citología , Núcleo Subtalámico/fisiología , Sinapsis/fisiología
3.
J Neurosci ; 40(4): 743-768, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31811030

RESUMEN

Within the basal ganglia circuit, the external globus pallidus (GPe) is critically involved in motor control. Aside from Foxp2+ neurons and ChAT+ neurons that have been established as unique neuron types, there is little consensus on the classification of GPe neurons. Properties of the remaining neuron types are poorly defined. In this study, we leverage new mouse lines, viral tools, and molecular markers to better define GPe neuron subtypes. We found that Sox6 represents a novel, defining marker for GPe neuron subtypes. Lhx6+ neurons that lack the expression of Sox6 were devoid of both parvalbumin and Npas1. This result confirms previous assertions of the existence of a unique Lhx6+ population. Neurons that arise from the Dbx1+ lineage were similarly abundant in the GPe and displayed a heterogeneous makeup. Importantly, tracing experiments revealed that Npas1+-Nkx2.1+ neurons represent the principal noncholinergic, cortically-projecting neurons. In other words, they form the pallido-cortical arm of the cortico-pallido-cortical loop. Our data further show that pyramidal-tract neurons in the cortex collateralized within the GPe, forming a closed-loop system between the two brain structures. Overall, our findings reconcile some of the discrepancies that arose from differences in techniques or the reliance on preexisting tools. Although spatial distribution and electrophysiological properties of GPe neurons reaffirm the diversification of GPe subtypes, statistical analyses strongly support the notion that these neuron subtypes can be categorized under the two principal neuron classes: PV+ neurons and Npas1+ neurons.SIGNIFICANCE STATEMENT The poor understanding of the neuronal composition in the external globus pallidus (GPe) undermines our ability to interrogate its precise behavioral and disease involvements. In this study, 12 different genetic crosses were used, hundreds of neurons were electrophysiologically characterized, and >100,000 neurons were histologically- and/or anatomically-profiled. Our current study further establishes the segregation of GPe neuron classes and illustrates the complexity of GPe neurons in adult mice. Our results support the idea that Npas1+-Nkx2.1+ neurons are a distinct GPe neuron subclass. By providing a detailed analysis of the organization of the cortico-pallidal-cortical projection, our findings establish the cellular and circuit substrates that can be important for motor function and dysfunction.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Corteza Cerebral/metabolismo , Globo Pálido/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Factor Nuclear Tiroideo 1/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Vías Nerviosas/metabolismo , Factor Nuclear Tiroideo 1/genética
4.
J Neurosci ; 36(20): 5472-88, 2016 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-27194328

RESUMEN

UNLABELLED: Compelling evidence demonstrates that the external globus pallidus (GPe) plays a key role in processing sensorimotor information. An anatomical projection from the GPe to the dorsal striatum has been described for decades. However, the cellular target and functional impact of this projection remain unknown. Using cell-specific transgenic mice, modern monosynaptic tracing techniques, and optogenetics-based mapping, we discovered that GPe neurons provide inhibitory inputs to direct and indirect pathway striatal projection neurons (SPNs). Our results indicate that the GPe input to SPNs arises primarily from Npas1-expressing neurons and is strengthened in a chronic Parkinson's disease (PD) model. Alterations of the GPe-SPN input in a PD model argue for the critical position of this connection in regulating basal ganglia motor output and PD symptomatology. Finally, chemogenetic activation of Npas1-expressing GPe neurons suppresses motor output, arguing that strengthening of the GPe-SPN connection is maladaptive and may underlie the hypokinetic symptoms in PD. SIGNIFICANCE STATEMENT: An anatomical projection from the pallidum to the striatum has been described for decades, but little is known about its connectivity pattern. The authors dissect the presynaptic and postsynaptic neurons involved in this projection, and show its cell-specific remodeling and strengthening in parkinsonian mice. Chemogenetic activation of Npas1(+) pallidal neurons that give rise to the principal pallidostriatal projection increases the time that the mice spend motionless. This argues that maladaptive strengthening of this connection underlies the paucity of volitional movements, which is a hallmark of Parkinson's disease.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Globo Pálido/fisiología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología , Potenciales Sinápticos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Globo Pálido/citología , Globo Pálido/metabolismo , Ratones , Ratones Endogámicos C57BL , Actividad Motora , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Optogenética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/fisiopatología
5.
J Neurosci ; 35(16): 6584-99, 2015 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-25904808

RESUMEN

Striatal GABAergic interneurons that express the gene for tyrosine hydroxylase (TH) have been identified previously by several methods. Although generally assumed to be dopaminergic, possibly serving as a compensatory source of dopamine (DA) in Parkinson's disease, this assumption has never been tested directly. In TH-Cre mice whose nigrostriatal pathway had been eliminated unilaterally with 6-hydroxydopamine, we injected a Cre-dependent virus coding for channelrhodopsin-2 and enhanced yellow fluorescent protein unilaterally into the unlesioned midbrain or bilaterally into the striatum. Fast-scan cyclic voltammetry in striatal slices revealed that both optical and electrical stimulation readily elicited DA release in control striata but not from contralateral striata when nigrostriatal neurons were transduced. In contrast, neither optical nor electrical stimulation could elicit striatal DA release in either the control or lesioned striata when the virus was injected directly into the striatum transducing only striatal TH interneurons. This demonstrates that striatal TH interneurons do not release DA. Fluorescence immunocytochemistry in enhanced green fluorescent protein (EGFP)-TH mice revealed colocalization of DA, l-amino acid decarboxylase, the DA transporter, and vesicular monoamine transporter-2 with EGFP in midbrain dopaminergic neurons but not in any of the striatal EGFP-TH interneurons. Optogenetic activation of striatal EGFP-TH interneurons produced strong GABAergic inhibition in all spiny neurons tested. These results indicate that striatal TH interneurons are not dopaminergic but rather are a type of GABAergic interneuron that expresses TH but none of the other enzymes or transporters necessary to operate as dopaminergic neurons and exert widespread GABAergic inhibition onto direct and indirect spiny neurons.


Asunto(s)
Cuerpo Estriado/metabolismo , Neuronas Dopaminérgicas/metabolismo , Neuronas GABAérgicas/metabolismo , Interneuronas/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Animales , Descarboxilasas de Aminoácido-L-Aromático/metabolismo , Cuerpo Estriado/fisiología , Dopamina/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Estimulación Eléctrica , Femenino , Neuronas GABAérgicas/fisiología , Interneuronas/fisiología , Masculino , Mesencéfalo/metabolismo , Ratones , Ratones Transgénicos , Inhibición Neural/fisiología , Optogenética , Estimulación Luminosa , Proteínas de Transporte Vesicular de Monoaminas/metabolismo
6.
Commun Biol ; 5(1): 1211, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36357506

RESUMEN

LRRK2 mutations are closely associated with Parkinson's disease (PD). Convergent evidence suggests that LRRK2 regulates striatal function. Here, by using knock-in mouse lines expressing the two most common LRRK2 pathogenic mutations-G2019S and R1441C-we investigated how LRRK2 mutations altered striatal physiology. While we found that both R1441C and G2019S mice displayed reduced nigrostriatal dopamine release, hypoexcitability in indirect-pathway striatal projection neurons, and alterations associated with an impaired striatal-dependent motor learning were observed only in the R1441C mice. We also showed that increased synaptic PKA activities in the R1441C and not G2019S mice underlie the specific alterations in motor learning deficits in the R1441C mice. In summary, our data argue that LRRK2 mutations' impact on the striatum cannot be simply generalized. Instead, alterations in electrochemical, electrophysiological, molecular, and behavioral levels were distinct between LRRK2 mutations. Our findings offer mechanistic insights for devising and optimizing treatment strategies for PD patients.


Asunto(s)
Cuerpo Estriado , Enfermedad de Parkinson , Ratones , Animales , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Cuerpo Estriado/metabolismo , Enfermedad de Parkinson/patología , Dopamina , Mutación
7.
J Neurosci ; 30(20): 7105-10, 2010 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-20484653

RESUMEN

Recent evidence suggests the intriguing possibility that midbrain dopaminergic (DAergic) neurons may use fast glutamatergic transmission to communicate with their postsynaptic targets. Because of technical limitations, direct demonstration of the existence of this signaling mechanism has been limited to experiments using cell culture preparations that often alter neuronal function including neurotransmitter phenotype. Consequently, it remains uncertain whether glutamatergic signaling between DAergic neurons and their postsynaptic targets exists under physiological conditions. Here, using an optogenetic approach, we provide the first conclusive demonstration that mesolimbic DAergic neurons in mice release glutamate and elicit excitatory postsynaptic responses in projection neurons of the nucleus accumbens. In addition, we describe the properties of the postsynaptic glutamatergic responses of these neurons during experimentally evoked burst firing of DAergic axons that reproduce the reward-related phasic population activity of the mesolimbic projection. These observations indicate that, in addition to DAergic mechanisms, mesolimbic reward signaling may involve glutamatergic transmission.


Asunto(s)
Dopamina/metabolismo , Ácido Glutámico/metabolismo , Neuronas/metabolismo , Núcleo Accumbens/citología , Transducción de Señal/fisiología , Animales , Dopaminérgicos/farmacología , Estimulación Eléctrica/métodos , Electroquímica/métodos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Técnicas de Transferencia de Gen , Técnicas In Vitro , Proteínas Luminiscentes/genética , Masculino , Ratones , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp/métodos , Estimulación Luminosa/métodos , Transducción de Señal/efectos de los fármacos , Bloqueadores de los Canales de Sodio/farmacología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Tetrodotoxina/farmacología
8.
Neuropharmacology ; 95: 468-76, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25908399

RESUMEN

The recent electrophysiological characterization of TH-expressing GABAergic interneurons (THINs) in the neostriatum revealed an unexpected degree of diversity of interneurons in this brain area (Ibáñez-Sandoval et al., 2010, Unal et al., 2011, 2015). Despite being relatively few in number, THINs may play a significant role in transmitting and distributing extra- and intrastriatal neuromodulatory signals in the striatal circuitry. Here we investigated the dopaminergic and cholinergic regulation of THINs in vitro. We found that the dominant effect of dopamine was a dramatic enhancement of the ability of THINs to generate long-lasting depolarizing plateau potentials (PPs). Interestingly, the same effect could also be elicited by amphetamine-induced release of endogenous dopamine suggesting that THINs may exhibit similar responses to changes in extracellular dopamine concentration in vivo. The enhancement of PPs in THINs is perhaps the most pronounced effect of dopamine on the intrinsic excitability of neostriatal neurons described to date. Further, we demonstrate that all subtypes of THINSs tested also express nicotinic cholinergic receptors. All THIS responded, albeit differentially, with depolarization, PPs and spiking to brief application of nicotinic agonists. Powerful modulation of the nonlinear integrative properties of THINs by dopamine and the direct depolarization of these neurons by acetylcholine may play important roles in mediating the effects of these neuromodulators in the neostriatum with potentially important implications for understanding the mechanisms of neuropsychiatric disorders affecting the basal ganglia.


Asunto(s)
Acetilcolina/metabolismo , Dopamina/metabolismo , Interneuronas/fisiología , Neostriado/fisiología , Tirosina 3-Monooxigenasa/metabolismo , Animales , Estimulación Eléctrica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Interneuronas/citología , Interneuronas/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones Transgénicos , Neostriado/citología , Neostriado/efectos de los fármacos , Agonistas Nicotínicos/farmacología , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D5/agonistas , Receptores de Dopamina D5/metabolismo , Receptores Nicotínicos/metabolismo , Técnicas de Cultivo de Tejidos , Tirosina 3-Monooxigenasa/genética
9.
PLoS One ; 3(11): e3735, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19011687

RESUMEN

Actin-based cell motility and force generation are central to immune response, tissue development, and cancer metastasis, and understanding actin cytoskeleton regulation is a major goal of cell biologists. Cell spreading is a commonly used model system for motility experiments -- spreading fibroblasts exhibit stereotypic, spatially-isotropic edge dynamics during a reproducible sequence of functional phases: 1) During early spreading, cells form initial contacts with the surface. 2) The middle spreading phase exhibits rapidly increasing attachment area. 3) Late spreading is characterized by periodic contractions and stable adhesions formation. While differences in cytoskeletal regulation between phases are known, a global analysis of the spatial and temporal coordination of motility and force generation is missing. Implementing improved algorithms for analyzing edge dynamics over the entire cell periphery, we observed that a single domain of homogeneous cytoskeletal dynamics dominated each of the three phases of spreading. These domains exhibited a unique combination of biophysical and biochemical parameters -- a motility module. Biophysical characterization of the motility modules revealed that the early phase was dominated by periodic, rapid membrane blebbing; the middle phase exhibited continuous protrusion with very low traction force generation; and the late phase was characterized by global periodic contractions and high force generation. Biochemically, each motility module exhibited a different distribution of the actin-related protein VASP, while inhibition of actin polymerization revealed different dependencies on barbed-end polymerization. In addition, our whole-cell analysis revealed that many cells exhibited heterogeneous combinations of motility modules in neighboring regions of the cell edge. Together, these observations support a model of motility in which regions of the cell edge exhibit one of a limited number of motility modules that, together, determine the overall motility function. Our data and algorithms are publicly available to encourage further exploration.


Asunto(s)
Membrana Celular/metabolismo , Movimiento Celular , Fibroblastos/citología , Animales , Apoptosis/efectos de los fármacos , Fenómenos Biomecánicos , Moléculas de Adhesión Celular/metabolismo , Membrana Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Citocalasina D/farmacología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Ratones , Proteínas de Microfilamentos/metabolismo , Fosfoproteínas/metabolismo , Transporte de Proteínas/efectos de los fármacos , Seudópodos/efectos de los fármacos , Seudópodos/metabolismo
10.
Cell ; 129(4): 773-85, 2007 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-17512410

RESUMEN

The immunological synapse (IS) is a junction between the T cell and antigen-presenting cell and is composed of supramolecular activation clusters (SMACs). No studies have been published on naive T cell IS dynamics. Here, we find that IS formation during antigen recognition comprises cycles of stable IS formation and autonomous naive T cell migration. The migration phase is driven by PKCtheta, which is localized to the F-actin-dependent peripheral (p)SMAC. PKCtheta(-/-) T cells formed hyperstable IS in vitro and in vivo and, like WT cells, displayed fast oscillations in the distal SMAC, but they showed reduced slow oscillations in pSMAC integrity. IS reformation is driven by the Wiscott Aldrich Syndrome protein (WASp). WASp(-/-) T cells displayed normal IS formation but were unable to reform IS after migration unless PKCtheta was inhibited. Thus, opposing effects of PKCtheta and WASp control IS stability through pSMAC symmetry breaking and reformation.


Asunto(s)
Presentación de Antígeno/fisiología , Células Presentadoras de Antígenos/metabolismo , Uniones Intercelulares/metabolismo , Isoenzimas/metabolismo , Proteína Quinasa C/metabolismo , Linfocitos T/metabolismo , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Animales , Células Presentadoras de Antígenos/inmunología , Comunicación Celular/fisiología , Movimiento Celular/fisiología , Activación Enzimática/fisiología , Inhibidores Enzimáticos/farmacología , Represión Enzimática/efectos de los fármacos , Represión Enzimática/fisiología , Uniones Intercelulares/genética , Uniones Intercelulares/inmunología , Isoenzimas/genética , Activación de Linfocitos/fisiología , Lípidos de la Membrana/metabolismo , Ratones , Ratones Noqueados , Proteína Quinasa C/genética , Proteína Quinasa C-theta , Linfocitos T/inmunología , Proteína del Síndrome de Wiskott-Aldrich/genética
11.
J Cell Sci ; 120(Pt 8): 1469-79, 2007 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-17389687

RESUMEN

Genetic or pharmacological alteration of the activity of the histone deacetylase 6 (HDAC6) induces a parallel alteration in cell migration. Using tubacin to block deacetylation of alpha-tubulin, and not other HDAC6 substrates, yielded a motility reduction equivalent to agents that block all NAD-independent HDACs. Accordingly, we investigated how the failure to deacetylate tubulin contributes to decreased motility in HDAC6-inhibited cells. Testing the hypothesis that motility is reduced because cellular adhesion is altered, we found that inhibiting HDAC6 activity towards tubulin rapidly increased total adhesion area. Next, we investigated the mechanism of the adhesion area increase. Formation of adhesions proceeded normally and cell spreading was more rapid in the absence of active HDAC6; however, photobleaching assays and adhesion breakdown showed that adhesion turnover was slower. To test the role of hyperacetylated tubulin in altering adhesion turnover, we measured microtubule dynamics in HDAC6-inhibited cells because dynamic microtubules are required to target adhesions for turnover. HDAC6 inhibition yielded a decrease in microtubule dynamics that was sufficient to decrease focal adhesion turnover. Thus, our results suggest a scenario in which the decreased dynamics of hyperacetylated microtubules in HDAC6-inhibited cells compromises their capacity to mediate the focal adhesion dynamics required for rapid cell migration.


Asunto(s)
Adhesión Celular , Histona Desacetilasas/metabolismo , Tubulina (Proteína)/metabolismo , Acetilación , Animales , Células COS , Movimiento Celular , Chlorocebus aethiops , Histona Desacetilasa 6 , Humanos
12.
J Cell Sci ; 119(Pt 7): 1307-19, 2006 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-16537651

RESUMEN

R-Ras, an atypical member of the Ras subfamily of small GTPases, enhances integrin-mediated adhesion and signaling through a poorly understood mechanism. Dynamic analysis of cell spreading by total internal reflection fluorescence (TIRF) microscopy demonstrated that active R-Ras lengthened the duration of initial membrane protrusion, and promoted the formation of a ruffling lamellipod, rich in branched actin structures and devoid of filopodia. By contrast, dominant-negative R-Ras enhanced filopodia formation. Moreover, RNA interference (RNAi) approaches demonstrated that endogenous R-Ras contributed to cell spreading. These observations suggest that R-Ras regulates membrane protrusions through organization of the actin cytoskeleton. Our results suggest that phospholipase Cepsilon (PLCepsilon) is a novel R-Ras effector mediating the effects of R-Ras on the actin cytoskeleton and membrane protrusion, because R-Ras was co-precipitated with PLCepsilon and increased its activity. Knockdown of PLCepsilon with siRNA reduced the formation of the ruffling lamellipod in R-Ras cells. Consistent with this pathway, inhibitors of PLC activity, or chelating intracellular Ca2+ abolished the ability of R-Ras to promote membrane protrusions and spreading. Overall, these data suggest that R-Ras signaling regulates the organization of the actin cytoskeleton to sustain membrane protrusion through the activity of PLCepsilon.


Asunto(s)
Actinas/metabolismo , Seudópodos/metabolismo , Fosfolipasas de Tipo C/metabolismo , Proteínas ras/metabolismo , Animales , Células COS , Calcio/metabolismo , Adhesión Celular , Línea Celular Transformada , Transformación Celular Viral , Quelantes/farmacología , Chlorocebus aethiops , Relación Dosis-Respuesta a Droga , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Femenino , Técnica del Anticuerpo Fluorescente , Colorantes Fluorescentes , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Glándulas Mamarias Humanas/citología , Microscopía Fluorescente , Modelos Biológicos , Fosfoinositido Fosfolipasa C , Pruebas de Precipitina , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Fosfolipasas de Tipo C/análisis , Fosfolipasas de Tipo C/genética , Proteínas ras/genética
13.
Phys Rev Lett ; 97(3): 038102, 2006 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-16907546

RESUMEN

We have monitored active movements of the cell circumference on specifically coated substrates for a variety of cells including mouse embryonic fibroblasts and T cells, as well as wing disk cells from fruit flies. Despite having different functions and being from multiple phyla, these cell types share a common spatiotemporal pattern in their normal membrane velocity; we show that protrusion and retraction events are organized in lateral waves along the cell membrane. These wave patterns indicate both spatial and temporal long-range periodic correlations of the actomyosin gel.


Asunto(s)
Membrana Celular/fisiología , Movimiento Celular/fisiología , Fibroblastos/fisiología , Linfocitos T/fisiología , Actomiosina/química , Actomiosina/metabolismo , Animales , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Fibroblastos/citología , Geles/química , Ratones , Modelos Biológicos , Linfocitos T/citología , Factores de Tiempo
14.
Phys Rev Lett ; 93(10): 108105, 2004 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-15447457

RESUMEN

We monitored isotropic spreading of mouse embryonic fibroblasts on fibronectin-coated substrates. Cell adhesion area versus time was measured via total internal reflection fluorescence microscopy. Spreading proceeds in well-defined phases. We found a power-law area growth with distinct exponents in three sequential phases, which we denote as basal, continuous, and contractile spreading. High resolution differential interference contrast microscopy was used to characterize local membrane dynamics at the spreading front. Fourier power spectra of membrane velocity reveal the sudden development of periodic membrane retractions at the transition from continuous to contractile spreading. We propose that the classification of cell spreading into phases with distinct functional characteristics and protein activity serves as a paradigm for a general program of a phase classification of cellular phenotype.


Asunto(s)
Membrana Celular/fisiología , Movimiento Celular/fisiología , Fibroblastos/citología , Fibroblastos/fisiología , Fluidez de la Membrana/fisiología , Modelos Biológicos , Proteínas Motoras Moleculares/fisiología , Animales , Adhesión Celular/fisiología , División Celular/fisiología , Células Cultivadas , Simulación por Computador , Fibronectinas/fisiología , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA