Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Plant Physiol ; 192(1): 666-679, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36881883

RESUMEN

The active structural change of actin cytoskeleton is a general host response upon pathogen attack. This study characterized the function of the cotton (Gossypium hirsutum) actin-binding protein VILLIN2 (GhVLN2) in host defense against the soilborne fungus Verticillium dahliae. Biochemical analysis demonstrated that GhVLN2 possessed actin-binding, -bundling, and -severing activities. A low concentration of GhVLN2 could shift its activity from actin bundling to actin severing in the presence of Ca2+. Knockdown of GhVLN2 expression by virus-induced gene silencing reduced the extent of actin filament bundling and interfered with the growth of cotton plants, resulting in the formation of twisted organs and brittle stems with a decreased cellulose content of the cell wall. Upon V. dahliae infection, the expression of GhVLN2 was downregulated in root cells, and silencing of GhVLN2 enhanced the disease tolerance of cotton plants. The actin bundles were less abundant in root cells of GhVLN2-silenced plants than in control plants. However, upon infection by V. dahliae, the number of actin filaments and bundles in the cells of GhVLN2-silenced plants was raised to a comparable level as those in control plants, with the dynamic remodeling of the actin cytoskeleton appearing several hours in advance. GhVLN2-silenced plants exhibited a higher incidence of actin filament cleavage in the presence of Ca2+, suggesting that pathogen-responsive downregulation of GhVLN2 could activate its actin-severing activity. These data indicate that the regulated expression and functional shift of GhVLN2 contribute to modulating the dynamic remodeling of the actin cytoskeleton in host immune responses against V. dahliae.


Asunto(s)
Ascomicetos , Verticillium , Gossypium/metabolismo , Resistencia a la Enfermedad/genética , Actinas/metabolismo , Calcio/metabolismo , Verticillium/fisiología , Ascomicetos/metabolismo , Citoesqueleto de Actina/metabolismo , Enfermedades de las Plantas/microbiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo
2.
Plant Cell ; 31(2): 520-536, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30651348

RESUMEN

The apoplast serves as the first battlefield between the plant hosts and invading microbes; therefore, work on plant-pathogen interactions has increasingly focused on apoplastic immunity. In this study, we identified three proteins in the apoplast of cotton (Gossypium sp) root cells during interaction of the plant with the fungal pathogen Verticillium dahliae Among these proteins, cotton host cells secrete chitinase 28 (Chi28) and the Cys-rich repeat protein 1 (CRR1), while the pathogen releases the protease VdSSEP1. Biochemical analysis demonstrated that VdSSEP1 hydrolyzed Chi28, but CRR1 protected Chi28 from cleavage by Verticillium dahliae secretory Ser protease 1 (VdSSEP1). In accordance with the in vitro results, CRR1 interacted with Chi28 in yeast and plant cells and attenuated the observed decrease in Chi28 level that occurred in the apoplast of plant cells upon pathogen attack. Knockdown of CRR1 or Chi28 in cotton plants resulted in higher susceptibility to V. dahliae infection, and overexpression of CRR1 increased plant resistance to V dahliae, the fungus Botrytis cinerea, and the oomycete Phytophthora parasitica var nicotianae By contrast, knockout of VdSSEP1 in V. dahliae destroyed the pathogenicity of this fungus. Together, our results provide compelling evidence for a multilayered interplay of factors in cotton apoplastic immunity.


Asunto(s)
Quitinasas/metabolismo , Gossypium/metabolismo , Gossypium/microbiología , Proteínas de Plantas/metabolismo , Verticillium/patogenicidad , Quitinasas/genética , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Gossypium/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética
3.
Plant J ; 95(6): 1055-1068, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29952082

RESUMEN

Salicylic acid (SA) signalling plays an essential role in plant innate immunity. In this study, we identified a component in the SA signaling pathway in potato (Solanum tuberosum), the transcription factor StbZIP61, and characterized its function in defence against Phytophthora infestans. Expression of StbZIP61 was induced upon P. infestans infection and following exposure to the defense signaling hormones SA, ethylene and jasmonic acid. Overexpression of StbZIP61 increased the tolerance of potato plants to P. infestans while RNA interference (RNAi) increased susceptibility. Yeast two-hybrid and pull down experiments revealed that StbZIP61 could interact with an NPR3-like protein (StNPR3L) that inhibited its DNA-binding and transcriptional activation activities. Moreover, StNPR3L interacted with StbZIP61 in an SA-dependent manner. Among candidate genes involved in SA-regulated defense responses, StbZIP61 had a significant impact on expression of StICS1, which encodes a key enzyme for SA biosynthesis. StICS1 transcription was induced upon P. infestans infection and this responsive expression to the pathogen was reduced in StbZIP61 RNAi plants. Accordingly, StICS1 expression was remarkably enhanced in StbZIP61-overexpressing plants. Together, our data demonstrate that StbZIP61 functions in concert with StNPR3L to regulate the temporal activation of SA biosynthesis, which contributes to SA-mediated immunity against P. infestans infection in potato.


Asunto(s)
Phytophthora infestans , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/fisiología , Proteínas de Plantas/fisiología , Ácido Salicílico/metabolismo , Solanum tuberosum/microbiología , Factores de Transcripción/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/inmunología , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Interferencia de ARN , Solanum tuberosum/inmunología , Solanum tuberosum/metabolismo , Factores de Transcripción/metabolismo , Técnicas del Sistema de Dos Híbridos
4.
Plant Physiol ; 170(4): 2392-406, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26869704

RESUMEN

Examining the proteins that plants secrete into the apoplast in response to pathogen attack provides crucial information for understanding the molecular mechanisms underlying plant innate immunity. In this study, we analyzed the changes in the root apoplast secretome of the Verticillium wilt-resistant island cotton cv Hai 7124 (Gossypium barbadense) upon infection with Verticillium dahliae Two-dimensional differential gel electrophoresis and matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry analysis identified 68 significantly altered spots, corresponding to 49 different proteins. Gene ontology annotation indicated that most of these proteins function in reactive oxygen species (ROS) metabolism and defense response. Of the ROS-related proteins identified, we further characterized a thioredoxin, GbNRX1, which increased in abundance in response to V. dahliae challenge, finding that GbNRX1 functions in apoplastic ROS scavenging after the ROS burst that occurs upon recognition of V. dahliae Silencing of GbNRX1 resulted in defective dissipation of apoplastic ROS, which led to higher ROS accumulation in protoplasts. As a result, the GbNRX1-silenced plants showed reduced wilt resistance, indicating that the initial defense response in the root apoplast requires the antioxidant activity of GbNRX1. Together, our results demonstrate that apoplastic ROS generation and scavenging occur in tandem in response to pathogen attack; also, the rapid balancing of redox to maintain homeostasis after the ROS burst, which involves GbNRX1, is critical for the apoplastic immune response.


Asunto(s)
Gossypium/metabolismo , Gossypium/microbiología , Homeostasis , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Tiorredoxinas/metabolismo , Verticillium/fisiología , Resistencia a la Enfermedad , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Especificidad de Órganos/genética , Filogenia , Raíces de Plantas/metabolismo , Haz Vascular de Plantas/metabolismo , Proteómica
5.
J Integr Plant Biol ; 59(8): 531-534, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28474404

RESUMEN

Cell elongation and secondary wall deposition are two consecutive stages during cotton fiber development. The mechanisms controlling the progression of these two developmental phases remain largely unknown. Here, we report the functional characterization of the actin-bundling protein GhFIM2 in cotton fiber. Overexpression of GhFIM2 increased the abundance of actin bundles, which was accompanied with accelerated fiber growth at the fast-elongating stage. Meanwhile, overexpression of GhFIM2 could propel the onset of secondary cell wall biogenesis. These results indicate that the dynamic rearrangement of actin higher structures involving GhFIM2 plays an important role in the development of cotton fiber cells.


Asunto(s)
Actinas/metabolismo , Fibra de Algodón , Gossypium/metabolismo , Proteínas de Plantas/metabolismo , Pared Celular/metabolismo , Gossypium/citología , Gossypium/genética , Plantas Modificadas Genéticamente
6.
Plant Cell Physiol ; 57(6): 1244-56, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27296714

RESUMEN

Grassbur is a destructive and invasive weed in pastures, and its burs can cause gastric damage to animals. The strong adaptability and reproductive potential of grassbur are partly due to a unique germination mechanism whereby twin seeds develop in a single bur: one seed germinates, but the other remains dormant. To investigate the molecular mechanism of seed germination in twin seeds, we used isobaric tags for relative and absolute quantitation (iTRAQ) to perform a dynamic proteomic analysis of germination and dormancy. A total of 1,984 proteins were identified, 161 of which were considered to be differentially accumulated. The differentially accumulated proteins comprised 102 up-regulated and 59 down-regulated proteins. These proteins were grouped into seven functional categories, ribosomal proteins being the predominant group. The authenticity and accuracy of the results were confirmed by enzyme-linked immunosorbent assay (ELISA) and quantitative real-time reverse transcription-PCR (qPCR). A dynamic proteomic analysis revealed that ribosome synthesis and carbohydrate metabolism affect seed germination possibly through the phosphoinositide 3-kinase (PI3K) pathway. As the PI3K pathway is generally activated by insulin, analyses of seeds treated with exogenous insulin by qPCR, ELISA and iTRAQ confirmed that the PI3K pathway can be activated, which suppresses dormancy and promotes germination in twin grassbur seeds. Together, these results show that the PI3K pathway may play roles in stimulating seed germination in grassbur by modulating ribosomal synthesis and carbohydrate metabolism.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Marcaje Isotópico/métodos , Fosfatidilinositol 3-Quinasas/metabolismo , Latencia en las Plantas , Malezas/fisiología , Proteómica/métodos , Ribosomas/metabolismo , Semillas/metabolismo , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Ciclo del Ácido Cítrico/efectos de los fármacos , ADN de Plantas/metabolismo , Metabolismo Energético/efectos de los fármacos , Glucólisis/efectos de los fármacos , Insulina/farmacología , Latencia en las Plantas/efectos de los fármacos , Proteínas de Plantas/metabolismo , Malezas/efectos de los fármacos , Malezas/enzimología , Biosíntesis de Proteínas/efectos de los fármacos , ARN de Planta/metabolismo , Ribosomas/efectos de los fármacos , Semillas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
7.
J Exp Bot ; 67(6): 1935-50, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26873979

RESUMEN

Accumulating evidence indicates that plant MYB transcription factors participate in defense against pathogen attack, but their regulatory targets and related signaling processes remain largely unknown. Here, we identified a defense-related MYB gene (GhMYB108) from upland cotton (Gossypium hirsutum) and characterized its functional mechanism. Expression of GhMYB108 in cotton plants was induced by Verticillium dahliae infection and responded to the application of defense signaling molecules, including salicylic acid, jasmonic acid, and ethylene. Knockdown of GhMYB108 expression led to increased susceptibility of cotton plants to V. dahliae, while ecotopic overexpression of GhMYB108 in Arabidopsis thaliana conferred enhanced tolerance to the pathogen. Further analysis demonstrated that GhMYB108 interacted with the calmodulin-like protein GhCML11, and the two proteins form a positive feedback loop to enhance the transcription of GhCML11 in a calcium-dependent manner. Verticillium dahliae infection stimulated Ca(2+) influx into the cytosol in cotton root cells, but this response was disrupted in both GhCML11-silenced plants and GhMYB108-silenced plants in which expression of several calcium signaling-related genes was down-regulated. Taken together, these results indicate that GhMYB108 acts as a positive regulator in defense against V. dahliae infection by interacting with GhCML11. Furthermore, the data also revealed the important roles and synergetic regulation of MYB transcription factor, Ca(2+), and calmodulin in plant immune responses.


Asunto(s)
Retroalimentación Fisiológica , Gossypium/inmunología , Gossypium/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Verticillium/fisiología , Arabidopsis/genética , Calcio/metabolismo , Señalización del Calcio/genética , Núcleo Celular/metabolismo , Citosol/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Gossypium/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Unión Proteica , Dominios Proteicos , Fracciones Subcelulares/metabolismo , Transactivadores/metabolismo , Transcripción Genética
8.
Plant Cell ; 25(11): 4421-38, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24220634

RESUMEN

LIN-11, Isl1 and MEC-3 (LIM)-domain proteins play pivotal roles in a variety of cellular processes in animals, but plant LIM functions remain largely unexplored. Here, we demonstrate dual roles of the WLIM1a gene in fiber development in upland cotton (Gossypium hirsutum). WLIM1a is preferentially expressed during the elongation and secondary wall synthesis stages in developing fibers. Overexpression of WLIM1a in cotton led to significant changes in fiber length and secondary wall structure. Compared with the wild type, fibers of WLIM1a-overexpressing plants grew longer and formed a thinner and more compact secondary cell wall, which contributed to improved fiber strength and fineness. Functional studies demonstrated that (1) WLIM1a acts as an actin bundler to facilitate elongation of fiber cells and (2) WLIM1a also functions as a transcription factor to activate expression of Phe ammonia lyase-box genes involved in phenylpropanoid biosynthesis to build up the secondary cell wall. WLIM1a localizes in the cytosol and nucleus and moves into the nucleus in response to hydrogen peroxide. Taken together, these results demonstrate that WLIM1a has dual roles in cotton fiber development, elongation, and secondary wall formation. Moreover, our study shows that lignin/lignin-like phenolics may substantially affect cotton fiber quality; this finding may guide cotton breeding for improved fiber traits.


Asunto(s)
Pared Celular/metabolismo , Fibra de Algodón , Gossypium/citología , Gossypium/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Actinas/metabolismo , Núcleo Celular/metabolismo , Pared Celular/genética , Pared Celular/ultraestructura , Clonación Molecular , Citoplasma/metabolismo , Regulación de la Expresión Génica de las Plantas , Gossypium/efectos de los fármacos , Gossypium/genética , Peróxido de Hidrógeno/farmacología , Lignina/metabolismo , Filogenia , Células Vegetales/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Transporte de Proteínas/efectos de los fármacos
9.
Molecules ; 21(2): 32, 2016 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-26821011

RESUMEN

Dihydroflavanol 4-reductase (DFR) is a key later enzyme involved in two polyphenols' (anthocyanins and proanthocyanidins (PAs)) biosynthesis, however it is not characterized in cotton yet. In present reports, a DFR cDNA homolog (designated as GhDFR1) was cloned from developing fibers of upland cotton. Silencing GhDFR1 in cotton by virus-induced gene silencing led to significant decrease in accumulation of anthocyanins and PAs. More interestingly, based on LC-MS analysis, two PA monomers, (-)-epicatachin and (-)-epigallocatachin, remarkably decreased in content in fibers of GhDFR1-silenced plants, but two new monomers, (-)-catachin and (-)-gallocatachin were present compared to the control plants infected with empty vector. The ectopic expression of GhDFR1 in an Arabidopsis TT3 mutant allowed for reconstruction of PAs biosynthesis pathway and led to accumulation of PAs in seed coat. Taken together, these data demonstrate that GhDFR1 contributes to the biosynthesis of anthocyanins and PAs in cotton.


Asunto(s)
Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Clonación Molecular/métodos , Gossypium/enzimología , Antocianinas/biosíntesis , Catequina/análogos & derivados , Catequina/análisis , Catequina/biosíntesis , Fibra de Algodón , Gossypium/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proantocianidinas/biosíntesis
10.
Plant Cell Physiol ; 55(1): 148-61, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24214268

RESUMEN

Examination of aquaporin (AQP) membrane channels in extremophile plants may increase our understanding of plant tolerance to high salt, drought or other conditions. Here, we cloned a tonoplast AQP gene (TsTIP1;2) from the halophyte Thellungiella salsuginea and characterized its biological functions. TsTIP1;2 transcripts accumulate to high levels in several organs, increasing in response to multiple external stimuli. Ectopic overexpression of TsTIP1;2 in Arabidopsis significantly increased plant tolerance to drought, salt and oxidative stresses. TsTIP1;2 had water channel activity when expressed in Xenopus oocytes. TsTIP1;2 was also able to conduct H2O2 molecules into yeast cells in response to oxidative stress. TsTIP1;2 was not permeable to Na(+) in Xenopus oocytes, but it could facilitate the entry of Na(+) ions into plant cell vacuoles by an indirect process under high-salinity conditions. Collectively, these data showed that TsTIP1;2 could mediate the conduction of both H2O and H2O2 across membranes, and may act as a multifunctional contributor to survival of T. salsuginea in highly stressful habitats.


Asunto(s)
Acuaporinas/metabolismo , Brassicaceae/fisiología , Estrés Fisiológico , Vacuolas/metabolismo , Animales , Arabidopsis/genética , Arabidopsis/fisiología , Transporte Biológico/efectos de los fármacos , Brassicaceae/efectos de los fármacos , Brassicaceae/genética , Clonación Molecular , Difusión , Sequías , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/genética , Proteínas Fluorescentes Verdes/metabolismo , Peróxido de Hidrógeno/metabolismo , Membranas Intracelulares/efectos de los fármacos , Membranas Intracelulares/metabolismo , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Filogenia , Plantas Modificadas Genéticamente , Transporte de Proteínas/efectos de los fármacos , Sodio/metabolismo , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Vacuolas/efectos de los fármacos , Agua/metabolismo , Xenopus
11.
Plant Physiol ; 162(3): 1669-80, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23715527

RESUMEN

Plant-specific TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors play crucial roles in development, but their functional mechanisms remain largely unknown. Here, we characterized the cellular functions of the class I TCP transcription factor GhTCP14 from upland cotton (Gossypium hirsutum). GhTCP14 is expressed predominantly in fiber cells, especially at the initiation and elongation stages of development, and its expression increased in response to exogenous auxin. Induced heterologous overexpression of GhTCP14 in Arabidopsis (Arabidopsis thaliana) enhanced initiation and elongation of trichomes and root hairs. In addition, root gravitropism was severely affected, similar to mutant of the auxin efflux carrier PIN-FORMED2 (PIN2) gene. Examination of auxin distribution in GhTCP14-expressing Arabidopsis by observation of auxin-responsive reporters revealed substantial alterations in auxin distribution in sepal trichomes and root cortical regions. Consistent with these changes, expression of the auxin uptake carrier AUXIN1 (AUX1) was up-regulated and PIN2 expression was down-regulated in the GhTCP14-expressing plants. The association of GhTCP14 with auxin responses was also evidenced by the enhanced expression of auxin response gene IAA3, a gene in the AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) family. Electrophoretic mobility shift assays showed that GhTCP14 bound the promoters of PIN2, IAA3, and AUX1, and transactivation assays indicated that GhTCP14 had transcription activation activity. Taken together, these results demonstrate that GhTCP14 is a dual-function transcription factor able to positively or negatively regulate expression of auxin response and transporter genes, thus potentially acting as a crucial regulator in auxin-mediated differentiation and elongation of cotton fiber cells.


Asunto(s)
Gossypium/citología , Gossypium/genética , Ácidos Indolacéticos/metabolismo , Epidermis de la Planta/citología , Epidermis de la Planta/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Diferenciación Celular , Núcleo Celular/metabolismo , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Gossypium/metabolismo , Gravitropismo/genética , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Tricomas/genética , Tricomas/metabolismo
12.
Plant Physiol ; 159(2): 835-50, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22492844

RESUMEN

The BLADE-ON-PETIOLE (BOP) genes of Arabidopsis (Arabidopsis thaliana) have been shown to play an essential role in floral abscission by specializing the abscission zone (AZ) anatomy. However, the molecular and cellular mechanisms that underlie differentiation of the AZ are largely unknown. In this study, we identified a tobacco (Nicotiana tabacum) homolog of BOP (designated NtBOP2) and characterized its cellular function. In tobacco plants, the NtBOP2 gene is predominantly expressed at the base of the corolla in an ethylene-independent manner. Both antisense suppression of NtBOP genes and overexpression of NtBOP2 in tobacco plants caused a failure in corolla shedding. Histological analysis revealed that the differentiation of the corolla AZ was blocked in the transgenic flowers. This blockage was due to uncontrolled cell elongation at the region corresponding to wild-type AZ. The role of NtBOP2 in regulating cell elongation was further demonstrated in Bright Yellow 2 single cells: perturbation of NtBOP2 function by a dominant negative strategy led to the formation of abnormally elongated cells. Subcellular localization analysis showed that NtBOP2-green fluorescent protein fusion proteins were targeted to both the nucleus and cytoplasm. Yeast two-hybrid, firefly luciferase complementation imaging, and in vitro pull-down assays demonstrated that NtBOP2 proteins interacted with TGA transcription factors. Taken together, these results indicated that NtBOP2 mediated the differentiation of AZ architecture by controlling longitudinal cell growth. Furthermore, NtBOP2 may achieve this outcome through interaction with the TGA transcription factors and via an ethylene-independent signaling pathway.


Asunto(s)
Diferenciación Celular , Flores/ultraestructura , Nicotiana/genética , Secuencia de Aminoácidos , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Aumento de la Célula , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromosomas de las Plantas/genética , Cromosomas de las Plantas/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , ADN Complementario/genética , ADN Complementario/metabolismo , Flores/genética , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Electrónica , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/citología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/fisiología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Nicotiana/citología , Nicotiana/fisiología , Técnicas del Sistema de Dos Híbridos
13.
Plant Cell Environ ; 35(3): 588-600, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21988377

RESUMEN

Suaeda salsa is a euhalophytic plant that is tolerant to coastal seawater salinity. In this study, we cloned a cDNA encoding an 8.4 kDa chloroplast outer envelope protein (designated as SsOEP8) from S. salsa and characterized its cellular function. Steady-state transcript levels of SsOEP8 in S. salsa were up-regulated in response to oxidative stress. Consistently, ectopic expression of SsOEP8 conferred enhanced oxidative stress tolerance in transgenic Bright Yellow 2 (BY-2) cells and Arabidopsis, in which H(2) O(2) content was reduced significantly in leaf cells. Further studies revealed that chloroplasts aggregated to the sides of mesophyll cells in transgenic Arabidopsis leaves, and this event was accompanied by inhibited expression of genes encoding proteins for chloroplast movements such as AtCHUP1, a protein involved in actin-based chloroplast positioning and movement. Moreover, organization of actin cytoskeleton was found to be altered in transgenic BY-2 cells. Together, these results suggest that SsOEP8 may play a critical role in oxidative stress tolerance by changing actin cytoskeleton-dependent chloroplast distribution, which may consequently lead to the suppressed production of reactive oxygen species (ROS) in chloroplasts. One significantly novel aspect of this study is the finding that the small chloroplast envelope protein is involved in oxidative stress tolerance.


Asunto(s)
Arabidopsis/fisiología , Chenopodiaceae/genética , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Estrés Oxidativo , Actinas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Secuencia de Bases , Células Cultivadas , Chenopodiaceae/metabolismo , Proteínas de Cloroplastos/genética , Clonación Molecular , Citoesqueleto/metabolismo , ADN Complementario/genética , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/fisiología
14.
J Integr Plant Biol ; 54(6): 412-21, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22583823

RESUMEN

AaNhaD, a gene isolated from the soda lake alkaliphile Alkalimonas amylolytica, encodes a Na(+) /H(+) antiporter crucial for the bacterium's resistance to salt/alkali stresses. However, it remains unknown whether this type of bacterial gene may be able to increase the tolerance of flowering plants to salt/alkali stresses. To investigate the use of extremophile genetic resources in higher plants, transgenic tobacco BY-2 cells and plants harboring AaNhaD were generated and their stress tolerance was evaluated. Ectopic expression of AaNhaD enhanced the salt tolerance of the transgenic BY-2 cells in a pH-dependent manner. Compared to wild-type controls, the transgenic cells exhibited increased Na(+) concentrations and pH levels in the vacuoles. Subcellular localization analysis indicated that AaNhaD-GFP fusion proteins were primarily localized in the tonoplasts. Similar to the transgenic BY-2 cells, AaNhaD-overexpressing tobacco plants displayed enhanced stress tolerance when grown in saline-alkali soil. These results indicate that AaNhaD functions as a pH-dependent tonoplast Na(+) /H(+) antiporter in plant cells, thus presenting a new avenue for the genetic improvement of salinity/alkalinity tolerance.


Asunto(s)
Gammaproteobacteria/genética , Plantas Modificadas Genéticamente/metabolismo , Tolerancia a la Sal/genética , Intercambiadores de Sodio-Hidrógeno/genética , Sodio/metabolismo , Línea Celular , Citosol/metabolismo , Concentración de Iones de Hidrógeno , Intercambiadores de Sodio-Hidrógeno/metabolismo , Nicotiana/metabolismo , Vacuolas/metabolismo
15.
Yi Chuan ; 34(2): 240-7, 2012 Feb.
Artículo en Zh | MEDLINE | ID: mdl-22382066

RESUMEN

Chitinase is one of the important pathogenesis-related (PR) proteins in plants. By comparative proteomics study, a novel pathogen-responsive chitinase (known as GbCHI) has been identified from sea-island cotton (Gossypium barbadense). The GbCHI cDNA was cloned from wilt-resistant sea-island cotton and the anti-fungal activity of the gene product was investigated. qRT-PCR analysis indicated that GbCHI was expressed constitutively in root, stem, leaf, flower, and ovule of cotton plant, and the expression could be induced by Verticillium dahliae and plant hormone SA, ACC, and JA. Subcellular localization analysis using GFP-tagged proteins showed that GbCHI-GFP fusion proteins were targeted mainly to the plasma membrane. Anti-fungal assay demonstrated that GbCHI could inhibit spore germination and hyphae growth of V. dahliae significantly. These results provide important information for understanding the cellular function of GbCHI and for exploring the application potential of this gene in molecular breeding of wilt-tolerant cotton plants.


Asunto(s)
Quitinasas/genética , Gossypium/genética , Secuencia de Aminoácidos , Antifúngicos/farmacología , Quitinasas/química , Quitinasas/farmacología , Clonación Molecular , Datos de Secuencia Molecular , Proteómica , Verticillium/efectos de los fármacos
16.
Proteomics ; 11(22): 4296-309, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21928292

RESUMEN

Verticillium wilt of cotton is a vascular disease mainly caused by the soil-born filamentous fungus Verticillium dahliae. To study the mechanisms associated with defense responses in wilt-resistant sea-island cotton (Gossypium barbadense) upon V. dahliae infection, a comparative proteomic analysis between infected and mock-inoculated roots of G. barbadense var. Hai 7124 (a cultivar showing resistance against V. dahliae) was performed by 2-DE combined with local EST database-assisted PMF and MS/MS analysis. A total of 51 upregulated and 17 downregulated proteins were identified, and these proteins are mainly involved in defense and stress responses, primary and secondary metabolisms, lipid transport, and cytoskeleton organization. Three novel clues regarding wilt resistance of G. barbadense are gained from this study. First, ethylene signaling was significantly activated in the cotton roots attacked by V. dahliae as shown by the elevated expression of ethylene biosynthesis and signaling components. Second, the Bet v 1 family proteins may play an important role in the defense reaction against Verticillium wilt. Third, wilt resistance may implicate the redirection of carbohydrate flux from glycolysis to pentose phosphate pathway (PPP). To our knowledge, this study is the first root proteomic analysis on cotton wilt resistance and provides important insights for establishing strategies to control this disease.


Asunto(s)
Gossypium/metabolismo , Gossypium/microbiología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Verticillium/metabolismo , Western Blotting , Electroforesis en Gel Bidimensional , Espectrometría de Masas , Raíces de Plantas/metabolismo , Proteoma/química , Proteoma/metabolismo , Proteómica , Estrés Fisiológico/fisiología
17.
J Proteome Res ; 9(2): 1076-87, 2010 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-19954254

RESUMEN

Cotton fiber is an ideal model for studying plant cell elongation. To date, the underlying mechanisms controlling fiber elongation remain unclear due to their high complexity. In this study, a comparative proteomic analysis between a short-lint fiber mutant (Ligon lintless, Li(1)) and its wild-type was performed to identify fiber elongation-related proteins. By 2-DE combined with local EST database-assisted MS/MS analysis, 81 differentially expressed proteins assigned to different functional categories were identified from Li(1) fibers, of which 54 were down-regulated and 27 were up-regulated. Several novel aspects regarding cotton fiber elongation can be illustrated from our data. First, over half of the down-regulated proteins were newly identified at the protein level, which is mainly involved in protein folding and stabilization, nucleocytoplasmic transport, signal transduction, and vesicular-mediated transport. Second, a number of cytoskeleton-related proteins showed a remarkable decrease in protein abundance in the Li(1) fibers. Accordingly, the architecture of actin cytoskeleton was severely deformed and the microtubule organization was moderately altered, accompanied with dramatic disruption of vesicle trafficking. Third, the expression of several proteins involved in unfolded protein response (UPR) was activated in Li(1) fibers, indicating that the deficiency of fiber cell elongation was related to ER stress. Collectively, these findings significantly advanced our understanding of the mechanisms associated with cotton fiber elongation.


Asunto(s)
Gossypium/metabolismo , Proteínas de Plantas/metabolismo , Proteómica , Secuencia de Bases , Cartilla de ADN , Electroforesis en Gel Bidimensional , Etiquetas de Secuencia Expresada , Microscopía Electrónica de Rastreo , Reacción en Cadena de la Polimerasa , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem
18.
Plant Cell Physiol ; 51(8): 1276-90, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20558432

RESUMEN

Cotton fiber development at the stages of elongation and secondary wall synthesis determines the traits of fiber length and strength. To date, the mechanisms controlling the progression of these two phases remain elusive. In this work, the function of a fiber-preferential actin-binding protein (GhPFN2) was characterized by cytological and molecular studies on the fibers of transgenic green-colored cotton (Gossypium hirsutum) through three successive generations. Overexpression of GhPFN2 caused pre-terminated cell elongation, resulting in a marked decrease in the length of mature fibers. Cytoskeleton staining and quantitative assay revealed that thicker and more abundant F-actin bundles formed during the elongation stage in GhPFN2-overexpressing fibers. Accompanying this alteration, the developmental reorientation of transverse microtubules to the oblique direction was advanced by 2 d at the period of transition from elongation to secondary wall deposition. Birefringence and reverse transcription-PCR analyses showed that earlier onset of secondary wall synthesis occurred in parallel. These data demonstrate that formation of the higher actin structure plays a determinant role in the progression of developmental phases in cotton fibers, and that GhPFN2 acts as a critical modulator in this process. Such a function of the actin cytoskeleton in cell phase conversion may be common to other secondary wall-containing plant cells.


Asunto(s)
Fibra de Algodón , Gossypium/genética , Proteínas de Plantas/metabolismo , Profilinas/metabolismo , Actinas/metabolismo , Secuencia de Aminoácidos , Pared Celular/metabolismo , Clonación Molecular , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Gossypium/crecimiento & desarrollo , Gossypium/metabolismo , Microtúbulos/metabolismo , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Profilinas/genética , ARN de Planta/genética
19.
Plant Biotechnol J ; 7(1): 13-23, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18761653

RESUMEN

Cotton fibre is the most important natural fibres for textile industry. To date, the mechanism that governs the development of fibre traits is largely unknown. In this study, we have characterized the function of a member of the actin depolymerizing factor (ADF) family in Gossypium hirsutum by down-regulation of the gene (designated as GhADF1) expression in the transgenic cotton plants. We observed that both the fibre length and strength of the GhADF1-underexpressing plants increased as compared to the wild-type fibre, and transgenic fibres contained more abundant F-actin filaments in the cortical region of the cells. Moreover, the secondary cell wall of the transgenic fibre appeared thicker and the cellulose content was higher than that of the control fibre. Our results suggest that organization of actin cytoskeleton regulated by actin-associated proteins such as GhADF1 plays a critical role in the processes of elongation and secondary cell wall formation during fibre development. Additionally, our study provided a candidate intrinsic gene for the improvement of fibre traits via genetic engineering.


Asunto(s)
Fibra de Algodón , Destrina/metabolismo , Regulación de la Expresión Génica de las Plantas , Gossypium/genética , Proteínas de Plantas/metabolismo , Citoesqueleto de Actina/ultraestructura , Pared Celular/ultraestructura , Celulosa/metabolismo , Clonación Molecular , ADN de Plantas/genética , Destrina/genética , Genes de Plantas , Gossypium/metabolismo , Fenotipo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
20.
Plant Cell Environ ; 31(7): 982-94, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18373622

RESUMEN

Suaeda salsa is a leaf-succulent euhalophytic plant capable of surviving under seawater salinity. Here, we report the isolation and functional analysis of a novel Suaeda gene (designated as SsTypA1) encoding a member of the TypA/BipA GTPase gene family. The steady-state transcript level of SsTypA1 in S. salsa was up-regulated in response to various external stressors. Expression of SsTypA1 was restricted to the epidermal layers of the leaf and stem in S. salsa, and SsTypA1-green fluorescence protein (GFP) fusion proteins were targeted to the chloroplasts of tobacco leaves. Ectopic over-expression of SsTypA1 rendered the transgenic tobacco plants with significantly increased tolerance to oxidative stress, and this was accompanied by a reduction in H(2)O(2) content. Enzymatic and Western blot analyses revealed that the activity and amount of the thylakoid-bound NAD(P)H dehydrogenase (NDH) complex in the chloroplasts of leaf cells were enhanced. Additionally, an in vitro assay demonstrated that SsTypA1 bound to GTP and possessed GTPase activity that was stimulated by the presence of chloroplast 70S ribosomes. Together, these results suggest that SsTypA1 may play a critical role in the development of oxidative stress tolerance, perhaps as a translational regulator of the stress-responsive proteins involved in reactive oxygen species (ROS) suppression in chloroplast.


Asunto(s)
Adaptación Fisiológica , Chenopodiaceae/enzimología , Cloroplastos/enzimología , GTP Fosfohidrolasas/metabolismo , Estrés Oxidativo , Secuencia de Bases , Northern Blotting , Chenopodiaceae/genética , Chenopodiaceae/metabolismo , Clonación Molecular , Cartilla de ADN , ADN Complementario , GTP Fosfohidrolasas/genética , Genes de Plantas , Proteínas Fluorescentes Verdes/metabolismo , Hibridación in Situ , Microscopía Electrónica de Rastreo , Filogenia , Especies Reactivas de Oxígeno , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA