RESUMEN
The cellular and molecular events that drive the early development of innate lymphoid cells (ILCs) remain poorly understood. We show that the transcription factor TCF-1 is required for the efficient generation of all known adult ILC subsets and their precursors. Using novel reporter mice, we identified a new subset of early ILC progenitors (EILPs) expressing high amounts of TCF-1. EILPs lacked efficient T and B lymphocyte potential but efficiently gave rise to NK cells and all known adult helper ILC lineages, indicating that they are the earliest ILC-committed progenitors identified so far. Our results suggest that upregulation of TCF-1 expression denotes the earliest stage of ILC fate specification. The discovery of EILPs provides a basis for deciphering additional signals that specify ILC fate.
Asunto(s)
Células de la Médula Ósea/citología , Células de la Médula Ósea/inmunología , Inmunidad Innata , Linfocitos/citología , Linfocitos/inmunología , Factor 1 de Transcripción de Linfocitos T/genética , Regulación hacia Arriba , Animales , Células Cultivadas , Citometría de Flujo , Ratones , Análisis por Micromatrices , Factor 1 de Transcripción de Linfocitos T/metabolismoRESUMEN
Duplex sequencing technology has been widely used in the detection of low-frequency mutations in circulating tumor deoxyribonucleic acid (DNA), but how to determine the sequencing depth and other experimental parameters to ensure the stable detection of low-frequency mutations is still an urgent problem to be solved. The mutation detection rules of duplex sequencing constrain not only the number of mutated templates but also the number of mutation-supportive reads corresponding to each forward and reverse strand of the mutated templates. To tackle this problem, we proposed a Depth Estimation model for stable detection of Low-Frequency MUTations in duplex sequencing (DELFMUT), which models the identity correspondence and quantitative relationships between templates and reads using the zero-truncated negative binomial distribution without considering the sequences composed of bases. The results of DELFMUT were verified by real duplex sequencing data. In the case of known mutation frequency and mutation detection rule, DELFMUT can recommend the combinations of DNA input and sequencing depth to guarantee the stable detection of mutations, and it has a great application value in guiding the experimental parameter setting of duplex sequencing technology.
Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Neoplasias , Humanos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutación , Neoplasias/genética , Tasa de Mutación , ADNRESUMEN
In gastric cancer (GC), the liver is a common organ for distant metastasis, and patients with gastric cancer with liver metastasis (GCLM) generally have poor prognosis. The mechanism of GCLM is unclear. Invadopodia are special membrane protrusions formed by tumor cells that can degrade the basement membrane and ECM. Herein, we investigated the role of invadopodia in GCLM. We found that the levels of invadopodia-associated proteins were significantly higher in liver metastasis than in the primary tumors of patients with GCLM. Furthermore, GC cells could activate hepatic stellate cells (HSCs) within the tumor microenvironment of liver metastases through the secretion of platelet-derived growth factor subunit B (PDGFB). Activated HSCs secreted hepatocyte growth factor (HGF), which activated the MET proto-oncogene, MET receptor of GC cells, thereby promoting invadopodia formation through the PI3K/AKT pathway and subsequently enhancing the invasion and metastasis of GC cells. Therefore, cross-talk between GC cells and HSCs by PDGFB/platelet derived growth factor receptor beta (PDGFRß) and the HGF/MET axis might represent potential therapeutic targets to treat GCLM.
Asunto(s)
Neoplasias Hepáticas , Podosomas , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patología , Proteínas Proto-Oncogénicas c-sis/metabolismo , Células Estrelladas Hepáticas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias Hepáticas/patología , Transducción de Señal , Microambiente TumoralRESUMEN
BACKGROUND: Combined small-cell lung carcinoma (cSCLC) represents a rare subtype of SCLC, the mechanisms governing the evolution of cancer genomes and their impact on the tumor immune microenvironment (TIME) within distinct components of cSCLC remain elusive. METHODS: Here, we conducted whole-exome and RNA sequencing on 32 samples from 16 cSCLC cases. RESULTS: We found striking similarities between two components of cSCLC-LCC/LCNEC (SCLC combined with large-cell carcinoma/neuroendocrine) in terms of tumor mutation burden (TMB), tumor neoantigen burden (TNB), clonality structure, chromosomal instability (CIN), and low levels of immune cell infiltration. In contrast, the two components of cSCLC-ADC/SCC (SCLC combined with adenocarcinoma/squamous-cell carcinoma) exhibited a high level of tumor heterogeneity. Our investigation revealed that cSCLC originated from a monoclonal source, with two potential transformation modes: from SCLC to SCC (mode 1) and from ADC to SCLC (mode 2). Therefore, cSCLC might represent an intermediate state, potentially evolving into another histological tumor morphology through interactions between tumor and TIME surrounding it. Intriguingly, RB1 inactivation emerged as a factor influencing TIME heterogeneity in cSCLC, possibly through neoantigen depletion. CONCLUSIONS: Together, these findings delved into the clonal origin and TIME heterogeneity of different components in cSCLC, shedding new light on the evolutionary processes underlying this enigmatic subtype.
Asunto(s)
Adenocarcinoma , Carcinoma de Células Grandes , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Microdisección , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/patología , Adenocarcinoma/genética , Carcinoma de Células Grandes/genética , Carcinoma de Células Grandes/patología , Genómica , Microambiente Tumoral/genéticaRESUMEN
BACKGROUND: Exploring predictive biomarkers and therapeutic strategies of ICBs has become an urgent need in clinical practice. Increasing evidence has shown that ARID1A deficiency might play a critical role in sculpting tumor environments in various tumors and might be used as pan-cancer biomarkers for immunotherapy outcomes. The current study aims to explored the immune-modulating role of ARID1A deficiency in Hepatitis B virus (HBV) related hepatocellular carcinoma (HBV-HCC) and its potential immunotherapeutic implications. METHODS: In the current study, we performed a comprehensive analysis using bioinformatics approaches and pre-clinical experiments to evaluate the ARID1A regulatory role on the biological behavior, and immune landscape of Hepatitis B virus (HBV) related hepatocellular carcinoma (HBV-HCC). A total of 425 HBV-related hepatocellular carcinoma patients from TCGA-LIHC, AMC and CHCC-HBV cohort were enrolled in bioinformatics analysis. Immunohistochemical staining of HBV-HCC specimens and ARID1A deficiency cellular models were used to validate the results of the analysis. RESULTS: Our results have shown that ARID1A deficiency promoted tumor proliferation and metastasis. More importantly, ARID1A deficiency in HBV-HCC was associated with the higher TMB, elevated immune activity, and up-regulated expression of immune checkpoint proteins, especially TIM-3 in HBV-HCC. Further, the expression of Galectin-9, which is the ligand of TIM-3, was elevated in the ARID1A knockout HBV positive cell line. CONCLUSION: To conclude, we have shown that the ARID1A deficiency was correlated with more active immune signatures and higher expression of immune checkpoints in HBV-HCC. Additionally, the present study provides insights to explore the possibility of the predictive role of ARID1A in HBV-HCC patients responsive to immunotherapy.
Asunto(s)
Carcinoma Hepatocelular , Hepatitis B , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Virus de la Hepatitis B/genética , Neoplasias Hepáticas/patología , Receptor 2 Celular del Virus de la Hepatitis A , Biomarcadores de Tumor , Hepatitis B/complicaciones , Proteínas de Unión al ADN , Factores de TranscripciónRESUMEN
Alternative polyadenylation (APA) is a widespread mechanism generating RNA molecules with alternative 3' ends. Herein, we discovered that TargetScan includes a novel XBP1 transcript with a longer 3' untranslated region (UTR) (XBP1-UL) than that included in NCBI. XBP1-UL exhibited a lowered level in blood samples from lung adenocarcinoma (LUAD) patients and in those after DDP treatment. Consistently, XBP1-UL was reduced in A549 cells compared to normal BEAS-2B cells, as well as in DDP-treated/resistant A549 cells relative to controls. Moreover, due to decreased usage of the distal polyadenylation site (PAS) in 3'UTR, XBP1-UL level was lowered in A549 cells and decreased further in DDP-resistant A549 (A549/DDP) cells. Importantly, use of the distal PAS (dPAS) and XBP1-UL level were gradually reduced in A549 cells under increasing concentrations of DDP, which was attributed to DDP-induced endoplasmic reticulum (ER) stress. Furthermore, XBP1 transcripts with shorter 3'UTR (XBP1-US) were more stable and presented stronger potentiation on DDP resistance. The choice of proximal PAS (pPAS) was attributed to CPSF6 elevation, which was caused by BRCA1-distrupted R-loop accumulation in CPSF6 5'end. DDP-induced nuclear LINC00221 also facilitated CPSF6-induced pPAS choice in the pre-XBP1 3'end. Finally, we found that unlike the unspliced XBP1 protein (XBP1-u), the spliced form XBP1-s retarded p53 degradation to facilitate DNA damage repair of LUAD cells. The current study provides new insights into tumor progression and DDP resistance in LUAD, which may contribute to improved LUAD treatment.
Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Cisplatino/farmacología , Cisplatino/uso terapéutico , Regiones no Traducidas 3'/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Resistencia a Antineoplásicos/genética , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Línea Celular Tumoral , Apoptosis , Proteína 1 de Unión a la X-Box/genéticaRESUMEN
OBJECTIVE: T-cell receptor (TCR) repertoire diversity is getting increasing attention as a predictive biomarker in cancer patients. However, the characteristics of the TCR together with its predictive significance for high grade serous ovarian cancer (HGSOC) patients receiving poly (ADP-ribose) polymerase inhibitor (PARPi) maintenance therapy remain unknown. METHODS: Twenty-seven patients with HGSOC were analyzed including 22 patients receiving PARPi maintenance therapy and 5 untreated patients as control. Peripheral blood samples were collected for TCR sequencing at baseline as well as one month and three months after the exposure to PARPi. To determine whether TCR diversity was related to PARPi efficacy, we compared the TCR repertoire between patients who had received PARPi and those who had not. RESULTS: For patients receiving PARPi treatment or not, we evaluated changes in clone abundance during PARPi maintenance and the similarity of the TCR repertoire before and after the treatment. The results revealed that patients receiving PARPi had TCR repertoires that were more stable than those of untreated cases. We next correlated TCR diversity with the efficacy of PARPi in the treatment group. The rising trend of TCR diversity after three months with PARPi treatment was associated with a longer PFS (21.7 vs 7.4 months, hazard ratio = 0.19, p < 0.001) and a better response to PARPi (91.7% vs 25.0%, p = 0.004). Furthermore, we discovered that the primary characteristic with predictive value for the effectiveness of PARPi is the considerable reduction of the high-frequency T cell clones. CONCLUSION: We suggested that the circulating TCR diversity could be a potential predictive biomarker for PARPi maintenance therapy in HGSOC.
Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Humanos , Femenino , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Biomarcadores , Receptores de Antígenos de Linfocitos TRESUMEN
BACKGROUND: Gastric cancer patients responded differently to the same treatment strategy and had various prognoses for the lack of biomarkers to guide the therapy choice. METHODS: RNA data of a local gastric cancer cohort with 103 patients were processed and used to explore potential treatment guiding factors. Cluster analysis was performed by non-negative matrix factorization. The expression level of collagen-related genes was evaluated by ssGSEA named collagen score (CS). Data from TCGA, ACRG, and an immune therapy cohort were utilized to explore prognosis and efficacy. Prognostic predictive power of CS was assessed using the nomogram. RESULTS: In our study, local RNA data were processed by cluster analysis, and it was found that cluster 2 contained a worse tumor infiltration status. The GSEA result showed that collagen-related pathways were differentially activated in two clusters. In TCGA and ACRG cohorts, the CS can be used as an independent prognostic factor (TCGA OS: p = 0.018, HR = 3.5; ACRG OS: p = 0.014, HR = 4.88). An immunotherapy cohort showed that the patients with higher CS had a significantly worse ORR (p = 0.0025). The high CS group contained several cell death pathways down-regulated and contained the worse tumor microenvironment. The nomogram demonstrated the survival prediction capability of collagen score. CONCLUSION: CS was verified as an independent prognostic factor and potentially reflected the therapeutic effect of immunotherapy. The CS could provide a new way to evaluate the clinical prognosis and response information helping develop the collagen-targeted treatment.
Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/terapia , Pronóstico , Nomogramas , ARN , Expresión Génica , Microambiente Tumoral/genéticaRESUMEN
PASylation, which was recently reported as the conjugation of pharmacologically active compounds with polypeptide sequences mainly made of proline, alanine and serine, has been proposed as an alternative to PEGylation. In this study, we designed PAS-modified liposomes (PASylated liposomes) and studied the effect of the incorporation of PAS-lipid on the stability and pharmacokinetic properties of liposomes, and compared them both in vitro and in vivo to PEGylated liposomes. Results showed that PASylated liposomes modified with single-chained PAS-lipid C16-(PA3)7 (SC-PAS-Lip) showed comparable storage and serum stability to PEGylated liposomes (PEG-Lip), and a significantly decreased macrophage uptake compared with unmodified liposomes. SC-PAS-Lip displayed long circulating pharmacokinetic profile which was not impacted by the repeated administration of liposomes, and they were less likely to induce the production of anti-PEG IgM compared with PEGylated liposomes, presenting PASylation as an alternative liposome modification strategy to PEGylation.
Asunto(s)
Lípidos , LiposomasRESUMEN
Ground-glass opacity (GGO)-associated pulmonary nodules have been known as a radiologic feature of early-stage lung cancers and exhibit an indolent biological behavior. However, the correlation between driver genes and radiologic features as well as the immune microenvironment remains poorly understood. We performed a custom 1021-gene panel sequencing of 334 resected pulmonary nodules presenting as GGO from 262 Chinese patients. A total of 130 multiple pulmonary nodules were sampled from 58 patients. Clinical-pathologic and radiologic parameters of these pulmonary nodules were collected. Immunohistochemistry (IHC) and multiplex immunofluorescent staining (mIF) were applied to analyze proliferation and immune cell markers of GGO-associated pulmonary nodules. Compared with pure GGO nodules, mixed GGO nodules were enriched for invasive adenocarcinoma (IAC) (182/216 vs 73/118, P < .001). Eighty-eight percent (294/334) of GGO-associated nodules carried at least one mutation in EGFR/ERBB2/BRAF/KRAS/MAP2K1 of the RTK/RAS signaling pathway, and the alterations in these driver genes were mutually exclusive. The analysis of multifocal pulmonary nodules from the same patient revealed evidence of functional convergence on RTK/RAS pathways. Nodules with ERBB2/BRAF/MAP2K1 mutations tended to be more indolent than those with EGFR and KRAS mutations. IHC and mIF staining showed that KRAS-mutant GGO nodules displayed higher infiltration of CD4+ T cell and CD8+ T cell as well as stronger proliferation and immune inhibitory signals. Our study demonstrates a driver landscape of radiologically detectable GGO-associated pulmonary nodules in Chinese patients and supports that different driver patterns in RTK/RAS pathway are corresponding to different radiologic features.
Asunto(s)
Neoplasias Pulmonares , Nódulos Pulmonares Múltiples , Genómica , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Nódulos Pulmonares Múltiples/diagnóstico por imagen , Nódulos Pulmonares Múltiples/genética , Nódulos Pulmonares Múltiples/patología , Proteínas Proto-Oncogénicas B-raf , Proteínas Proto-Oncogénicas p21(ras)/genética , Microambiente TumoralRESUMEN
BACKGROUND: Bronchial washing fluid (BWF) is a less-invasive specimen. Due to the limited sensitivity of BWF cellular component diagnosis, the aim of this study was to explore the potential role of BWF supernatant as a source of liquid biopsy of lung cancer. METHODS: This prospective study enrolled 76 suspected and 5 progressed lung cancer patients. Transbronchial biopsy tissues, BWF supernatant (BWF_Sup) and BWF precipitant (BWF_Pre) were tested by a targeted panel of 1021 genes. RESULTS: BWF_Sup cell-free DNA (cfDNA) was superior to tissue biopsy and BWF_Pre in determining mutational allele frequency, tumour mutational burden, and chromosomal instability. Moreover, BWF_Sup and BWF_Pre achieved comparable efficacy to tissue samples in differentiating malignant and benign patients, but only BWF_Sup persisted differentiated performance after excluding 55 malignancies pathologically diagnosed by bronchoscopic biopsy. Among 67 malignant patients, 82.1% and 71.6% of tumour-derived mutations (TDMs) were detected in BWF_Sup and BWF_Pre, respectively, and the detectability of TDMs in BWF_Sup was independent of the cytological examination of BWF. BWF_Sup outperformed BWF_Pre in providing more subclonal information and thus might yield advantage in tracking drug-resistant markers. CONCLUSIONS: BWF_Sup cfDNA is a reliable medium for lung cancer diagnosis and genomic profiles and may provide important information for subsequent therapeutic regimens.
Asunto(s)
Ácidos Nucleicos Libres de Células , Neoplasias Pulmonares , Humanos , Ácidos Nucleicos Libres de Células/genética , Estudios Prospectivos , Genómica , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genéticaRESUMEN
BACKGROUND: Remote ischemic conditioning (RIC) displays a cardioprotective role in acute myocardial infarction (AMI). Since interruption of blood vessel is not an essential trigger of remote cardioprotection, tissue compression may play a prominent part in the effect. The purpose of this study was to confirm the protective effect of tissue compression on AMI and the underlying mechanisms. METHODS AND RESULTS: Rat model of AMI was induced by ligation of the left anterior descending coronary artery. Remote cyclic compression (RCC) on forelimb was applied to AMI rats for 3 days after the operation. RCC postconditioning displayed cardioprotective effects against AMI injury by limiting infarct size, alleviating cardiac dysfunction, and suppressing cardiomyocyte apoptosis. In addition, RCC postconditioning induced myocardial autophagy as evidenced by increased LC3-II and Beclin-1 and reduced mTOR levels. Furthermore, RCC treatment upregulated AMPK phosphorylation in the context of AMI hearts. AMPK inhibitor Compound C administration markedly abrogated RCC-mediated cardioprotective effect, as evidenced by decreased infarct size and cardiac function. CONCLUSION: Our results indicated that RCC postconditioning could attenuate AMI injury through inhibiting apoptosis and promoting autophagy via AMPK signaling pathway. The research provided a novel perspective for studying the cardioprotection of RIC and possible therapeutic strategy for managing AMI injury.
Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Infarto del Miocardio , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Autofagia , Carcinoma de Células Renales/metabolismo , Femenino , Humanos , Neoplasias Renales/metabolismo , Masculino , Infarto del Miocardio/metabolismo , Infarto del Miocardio/prevención & control , Miocardio/metabolismo , RatasRESUMEN
Many mutant p53 proteins (mutp53s) exert oncogenic gain-of-function (GOF) properties, but the mechanisms mediating these functions remain poorly defined. We show here that GOF mutp53s inhibit AMP-activated protein kinase (AMPK) signaling in head and neck cancer cells. Conversely, downregulation of GOF mutp53s enhances AMPK activation under energy stress, decreasing the activity of the anabolic factors acetyl-CoA carboxylase and ribosomal protein S6 and inhibiting aerobic glycolytic potential and invasive cell growth. Under conditions of energy stress, GOF mutp53s, but not wild-type p53, preferentially bind to the AMPKα subunit and inhibit AMPK activation. Given the importance of AMPK as an energy sensor and tumor suppressor that inhibits anabolic metabolism, our findings reveal that direct inhibition of AMPK activation is an important mechanism through which mutp53s can gain oncogenic function.
Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Carcinoma de Células Escamosas/genética , Metabolismo Energético/genética , Neoplasias de Cabeza y Cuello/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Acetil-CoA Carboxilasa/metabolismo , Animales , Antimetabolitos Antineoplásicos/farmacología , Movimiento Celular/genética , Proliferación Celular , Activación Enzimática/genética , Fluorouracilo/farmacología , Humanos , Ratones , Ratones Desnudos , Invasividad Neoplásica/genética , Trasplante de Neoplasias , Unión Proteica/genética , Interferencia de ARN , ARN Interferente Pequeño , Proteína S6 Ribosómica/metabolismo , Transducción de Señal/genética , Esferoides Celulares/citología , Carcinoma de Células Escamosas de Cabeza y Cuello , Trasplante Heterólogo , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/genéticaRESUMEN
Rationale: Ground-glass opacity (GGO)-associated lung cancers are common and radiologically distinct clinical entities known to have an indolent clinical course and superior survival, implying a unique underlying biology. However, the molecular and immune characteristics of GGO-associated lung nodules have not been systemically studied. Objectives: To provide mechanistic insights for the treatment of these radiologically distinct clinical entities. Methods: We initiated a prospective cohort study to collect and characterize pulmonary nodules with GGO components (nonsolid and part-solid nodules) or without GGO components, as precisely quantified by using three-dimensional image reconstruction to delineate the molecular and immune features associated with GGO. Multiomics assessment conducted by using targeted gene panel sequencing, RNA sequencing, TCR (T-cell receptor) sequencing, and circulating tumor DNA detection was performed. Measurements and Main Results: GGO-associated lung cancers exhibited a lower tumor mutation burden than solid nodules. Transcriptomic analysis revealed a less active immune environment in GGO components and immune pathways, decreased expression of immune activation markers, and less infiltration of most immune-cell subsets, which was confirmed by using multiplex immunofluorescence. Furthermore, T-cell repertoire sequencing revealed lower T-cell expansion in GGO-associated lung cancers. HLA loss of heterozygosity was significantly less common in lung adenocarcinomas with GGO components than in those without. Circulating tumor DNA analysis suggested that the release of tumor DNA to the peripheral blood was correlated with the tumor size of non-GGO components. Conclusions: Compared with lung cancers presenting with solid lung nodules, GGO-associated lung cancers are characterized by a less active metabolism and a less active immune microenvironment, which may be the mechanisms underlying their indolent clinical course. Clinical trial registered with www.clinicaltrials.gov (NCT03320044).
Asunto(s)
Adenocarcinoma del Pulmón/diagnóstico , Adenocarcinoma del Pulmón/fisiopatología , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/fisiopatología , Lesiones Precancerosas/diagnóstico , Lesiones Precancerosas/fisiopatología , Nódulo Pulmonar Solitario/diagnóstico , Nódulo Pulmonar Solitario/fisiopatología , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor , Estudios de Cohortes , Femenino , Humanos , Imagenología Tridimensional/métodos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Estudios RetrospectivosRESUMEN
HLA-I LOH may facilitate immune evasion. However, large population studies on the prevalence of HLA-I LOH across different cancer types and in relation to mutational profiles are lacking, in particular, in the Chinese population. In this study, analysis was performed in 1504 advanced pan-cancer patients and 134 early-stage non-small-cell lung cancer patients using a 1021-gene panel. The consistency between the 1021-gene panel and whole-exome sequencing was evaluated in 45 samples, where concordant results were obtained in 95.6% (43/45) of the samples. Analytical results revealed that the prevalence of HLA-I LOH in tumor tissue presents considerable differences across cancer types. HLA-I LOH was relevant to genomic instability, reflected in higher tumor mutation burden level. HLA-I LOH occurs more frequently in MSS samples than in MSI-H samples. The alteration frequencies of p53 pathway, RTK/RAS pathway, Notch pathway, Hippo pathway, and Nrf2 pathway in HLA-I LOH group were significantly higher than that in HLA-I stable group (p < .0001, p < .0001, p = .032, p = .013, p = .003, respectively). In DNA damage response pathways, alterations in the checkpoint factor pathway and Fanconi anemia pathway are enriched in HLA-I LOH group (p < .0001, p = .023, respectively). Besides, HLA-I LOH was accompanied by higher mutation rates of several tumor suppressors, including TP53 and LRP1B. These results may shed light on follow-up tumor immunology research.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , China/epidemiología , Genómica , Humanos , Pérdida de Heterocigocidad , Neoplasias Pulmonares/epidemiología , Neoplasias Pulmonares/genética , PrevalenciaRESUMEN
BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) is characterised by a dismal prognosis; nonetheless, limited studies have unveiled the mechanisms underlying HNSCC relapse. METHODS: Next-generation sequencing was performed to identify the somatic mutations in 188 matched samples, including primary tumours, tumour-adjacent tissues (TATs), pre- and post-operative plasma, saliva and peripheral blood lymphocytes (PBLs) from 27 patients. The evolutionary relationship between TATs and tumours were analysed. The dynamic changes of tumour- and TAT-specific mutations in liquid biopsies were monitored together with survival analysis. RESULTS: Alterations were detected in 27 out of 27 and 19 out of 26 tumours and TATs, respectively. TP53 was the most prevalently mutated gene in TATs. Some TATs shared mutations with primary tumours, while some other TATs were evolutionarily unrelated to tumours. Notably, TP53 mutations in TATs are stringently associated with premalignant transformation and are indicative of worse survival (hazard ratio = 14.01). TAT-specific mutations were also detected in pre- and/or post-operative liquid biopsies and were indicative of disease relapse. CONCLUSIONS: TATs might undergo the processes of premalignant transformation, tumorigenesis and eventually relapse by either inheriting tumorigenic mutations from ancestral clones where the tumour originated or gaining private mutations independent of primary tumours. Detection of tumour- and/or TAT-specific genetic alterations in post-operative biopsies shows profound potential in prognostic use.
Asunto(s)
Neoplasias de Cabeza y Cuello/genética , Mutación , Recurrencia Local de Neoplasia/genética , Análisis de Secuencia de ADN/métodos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Proteína p53 Supresora de Tumor/genética , Adulto , Anciano , Biomarcadores de Tumor/genética , Evolución Molecular , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Persona de Mediana Edad , Plasma/química , Pronóstico , Estudios Prospectivos , Saliva/química , Análisis de SupervivenciaRESUMEN
BACKGROUND: Circulating tumor DNA (ctDNA) provides a promising noninvasive alternative to evaluate the efficacy of neoadjuvant chemotherapy (NCT) in breast cancer. METHODS: Herein, we collected 63 tissue (aspiration biopsies and resected tissues) and 206 blood samples (baseline, during chemotherapy (Chemo), after chemotherapy (Post-Chemo), after operation (Post-Op), during follow-up) from 32 patients, and preformed targeted deep sequencing with a customed 1021-gene panel. RESULTS: As the results, TP53 (43.8%) and PIK3CA (40.6%) were the most common mutant genes in the primary tumors. At least one tumor-derived mutation was detected in the following number of blood samples: 21, baseline; 3, Chemo; 9, Post-Chemo; and 5, Post-Op. Four patients with pathologic complete response had no tissue mutation in Chemo and Post-Chemo blood. Compared to patients with mutation-positive Chemo or Post-Chemo blood, the counterparts showed a superior primary tumor decrease (median, 86.5% versus 54.6%) and lymph involvement (median, 1 versus 3.5). All five patients with mutation-positive Post-Op developed distant metastases during follow-up, and the sensitivity of detecting clinically relapsed patients was 71.4% (5/7). The median DFS was 9.8 months for patients with mutation-positive Post-Op but not reached for the others (HR 23.53; 95% CI, 1.904-290.9; p < 0.0001). CONCLUSIONS: Our study shows that sequential monitoring of blood ctDNA was an effective method for evaluating NCT efficacy and patient recurrence. Integrating ctDNA profiling into the management of LABC patients might improve clinical outcome. TRIAL REGISTRATION: This prospective study recruited LABC patients at Peking Union Medical College Hospital (ClinicalTrials.gov Identifier: NCT02797652).
Asunto(s)
Neoplasias de la Mama , ADN Tumoral Circulante , Biomarcadores de Tumor/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , ADN Tumoral Circulante/genética , Femenino , Humanos , Mutación , Terapia Neoadyuvante , Recurrencia Local de Neoplasia , Pronóstico , Estudios ProspectivosRESUMEN
Electroacupuncture (EA) intervention has a remarkable cardioprotection against myocardial ischemia reperfusion injury (MIRI). Recently, it has been suggested that the gut microbiota plays an important role in regulating the progression and prognosis of MIRI. The purpose of this study was to illustrate the relationship between gut microbiota and cardioprotection of EA on MIRI. We conducted a MIRI model by ligating the left anterior descending coronary artery for 30 min followed by reperfusion in male Sprague Dawley rats, which then received 7 days of EA intervention. Echocardiography was employed to evaluate left ventricular function. Fecal samples were collected for microbial analysis by 16S rDNA high-throughput sequencing. Blood samples and myocardium were collected for inflammatory cytokine detection by enzyme linked immunosorbent assay (ELISA) and Western blot. Hematoxylin & eosin (HE) staining and immunofluorescence of ileum tissue were performed for intestinal damage evaluation. After 7 days of EA intervention, the left ventricular function was improved with significantly increased ejection fraction and fractional shortening. Furthermore, we found that EA intervention reversed the changed gut microbiota induced by MIRI, including Clostridiales, RF39, S24-7, Desulfovibrio, and Allobaculum, improved the impaired gut barrier, reduced the production and circulation of lipopolysaccharide (LPS), inhibited the level of interleukin 6 (IL-6) and interleukin 12 (IL-12) in periphery and decreased the expression of Toll like receptor 4 (TLR4) and IL-6 in myocardium. EA intervention could improve the impaired gut mucosal barrier and reduce the production and circulation of LPS after MIRI through regulating gut microbiota, thus inhibiting the circulation and myocardium inflammation and finally exerted the cardioprotective effect.
Asunto(s)
Bacterias/metabolismo , Electroacupuntura , Microbioma Gastrointestinal , Mediadores de Inflamación/metabolismo , Mucosa Intestinal/microbiología , Lipopolisacáridos/sangre , Daño por Reperfusión Miocárdica/prevención & control , Miocardio/metabolismo , Proteínas de Fase Aguda , Animales , Bacterias/crecimiento & desarrollo , Proteínas Portadoras/sangre , Modelos Animales de Enfermedad , Disbiosis , Masculino , Glicoproteínas de Membrana/sangre , Daño por Reperfusión Miocárdica/sangre , Daño por Reperfusión Miocárdica/microbiología , Daño por Reperfusión Miocárdica/patología , Miocardio/patología , Ratas Sprague-Dawley , Función Ventricular IzquierdaRESUMEN
BACKGROUND: EGFR and ALK alternations often contribute to human malignancies, including lung cancer. EGFR and ALK mutations are usually sensitive to EGFR-tyrosine kinase inhibitors (TKIs) and ALK-TKIs. Although generally mutually exclusive, these mutations do co-exist in rare cases. This study investigated the frequencies, clinical characteristics, therapeutic efficacies, and genetic profiles of lung cancer patients with EGFR and ALK co-mutations. METHODS: Patients with concurrent EGFR and ALK mutations were included in this study, which analyzed mutation profiles and treatment histories. SPSS20.0 were used for survival analysis. RESULTS: Among 271 ALK-positive (ALK-pos) and 2975 EGFR-positive (EGFR-pos) patients in our database, nine (2.6% of ALK-pos and 0.2% of EGFR-pos) patients had concurrent EGFR and ALK mutations (including three exon19 Indel + EML4-ALK, two exon19 Indel + STRN-ALK, two L858R + L1152R, one L858R + EML4-ALK, and one G719C + S768I + STRN-ALK). Eight patients had at least one type of EGFR-TKIs treatment. The median progression free survival (PFS) of these patients on first-generation EGFR-TKIs was 14.5 months (95% CI: 11 - NR). Of these eight patients, one who progressed on Gefitinib and subsequently on Osimertinib had a T790M + C797G. The other seven EGFR-TKIs resistance patients had no known resistance mutations. No patients had ALK mutations before treatment, so ALK mutations may have developed as resistance mechanisms during EGFR-TKIs therapies. EGFR-TKIs-treated patients with EGFR/ALK L1152R mutations generally had a shorter PFS than patients with other mutation combinations. CONCLUSIONS: ALK and EGFR mutations coincide at a relatively low frequency in lung cancer patients. ALK mutations developed either synchronously or heterochronously with EGFR mutations. Two ALK mutations (L1152R and STRN-ALK) may co-exist with EGFR mutations at a higher frequency than others. Most EGFR/ALK co-alteration patients (other than the EGFR/ALK L1152R type) can benefit from first line EGFR-TKIs.
Asunto(s)
Quinasa de Linfoma Anaplásico/genética , Genes erbB-1 , Neoplasias Pulmonares/genética , Mutación/genética , Acrilamidas/uso terapéutico , Afatinib/uso terapéutico , Anciano , Compuestos de Anilina/uso terapéutico , Antineoplásicos/uso terapéutico , Intervalos de Confianza , Resistencia a Antineoplásicos/genética , Gefitinib/uso terapéutico , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/mortalidad , Persona de Mediana Edad , Supervivencia sin Progresión , Inhibidores de Proteínas Quinasas/uso terapéutico , Estudios Retrospectivos , Análisis de SupervivenciaRESUMEN
BACKGROUND: Immunoinflammatory and nutritional markers, such as the peripheral blood neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR) and Onodera's prognostic nutritional index (OPNI), have gained considerable attention and have been preliminarily revealed as prognostic markers of gastrointestinal stromal tumors (GISTs). METHODS: In this study, we first investigated the prognostic value of OPNI in GISTs treated with or without TKIs based on the propensity score matching (PSM) method. All of the patients had received surgical resection for primary GIST, and data from 2010 to 2018 were initially and retrospectively identified from our gastrointestinal center. Recurrence-free survival (RFS) was calculated by the Kaplan-Meier method and compared by the log-rank test. RESULTS: The patients were divided into groups treated and not treated with TKIs, and we used the propensity score matching method to homogenize their baseline data. Multivariate Cox proportional hazard regression models were applied to identify associations with outcome variables. A total of 563 GISTs were initially chosen, and 280 of them were included for analysis under the inclusion criteria. After PSM, there were 200 patients included. Multivariate analyses identified OPNI as an independent prognostic marker that was associated with primary site, tumor size, mitotic index, tumor rupture, necrosis, and modified NIH risk classification. Low OPNI (< 42.6; HR 0.409; P < 0.001) was associated with worse RFS. CONCLUSIONS: Preoperative OPNI is a novel and useful prognostic marker for GISTs both treated and not treated with TKIs. Higher NLR and PLR have negative effects on RFS.