Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurooncol ; 167(1): 63-74, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38427133

RESUMEN

BACKGROUND: Glioma is a type of malignant cancer that affect the central nervous system. New predictive biomarkers have been investigated in recent years, but the clinical prognosis for glioma remains poor. The function of CPLX2 in glioma and the probable molecular mechanism of tumor suppression were the focus of this investigation. METHODS: The glioma transcriptome profile was downloaded from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases for analysis of CPLX2 expression in glioma. RT-qPCR was performed to detect the expression of CPLX2 in 68 glioma subjects who have been followed up. Kaplan-Meier survival analyses were conducted to assess the effect of CPLX2 on the prognosis of glioma patients. The knockdown and overexpressed cell lines of CPLX2 were constructed to investigate the impact of CPLX2 on glioma. The cell growth, colony formation, and tumor formation in xenograft were performed. RESULTS: The expression of CPLX2 was downregulated in glioma and was negatively correlated with the grade of glioma. The higher expression of CPLX2 predicted a longer survival, as indicated by the analysis of Kaplan-Meier survival curves. Overexpressed CPLX2 impaired tumorigenesis in glioma progression both in vivo and in vitro. Knocking down CPLX2 promoted the proliferation of glioma cells. The analysis of GSEA and co-expression analysis revealed that CPLX2 may affect the malignancy of glioma by regulating the hypoxia and inflammation pathways. CONCLUSIONS: Our data indicated that CPLX2 functions as a tumor suppressor and could be used as a potential prognostic marker in glioma.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular , Neoplasias Encefálicas , Glioma , Proteínas Supresoras de Tumor , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Glioma/genética , Glioma/metabolismo , Glioma/patología , Estimación de Kaplan-Meier , Pronóstico , Transcriptoma , Proteínas del Tejido Nervioso/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
2.
Acta Pharmacol Sin ; 45(4): 728-737, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38086898

RESUMEN

Stimulation of adult cardiomyocyte proliferation is a promising strategy for treating myocardial infarction (MI). Earlier studies have shown increased CCL2 levels in plasma and cardiac tissue both in MI patients and mouse models. In present study we investigated the role of CCL2 in cardiac regeneration and the underlying mechanisms. MI was induced in adult mice by permanent ligation of the left anterior descending artery, we showed that the serum and cardiac CCL2 levels were significantly increased in MI mice. Intramyocardial injection of recombinant CCL2 (rCCL2, 1 µg) immediately after the surgery significantly promoted cardiomyocyte proliferation, improved survival rate and cardiac function, and diminished scar sizes in post-MI mice. Alongside these beneficial effects, we observed an increased angiogenesis and decreased cardiomyocyte apoptosis in post-MI mice. Conversely, treatment with a selective CCL2 synthesis inhibitor Bindarit (30 µM) suppressed both CCL2 expression and cardiomyocyte proliferation in P1 neonatal rat ventricle myocytes (NRVMs). We demonstrated in NRVMs that the CCL2 stimulated cardiomyocyte proliferation through STAT3 signaling: treatment with rCCL2 (100 ng/mL) significantly increased the phosphorylation levels of STAT3, whereas a STAT3 phosphorylation inhibitor Stattic (30 µM) suppressed rCCL2-induced cardiomyocyte proliferation. In conclusion, this study suggests that CCL2 promotes cardiac regeneration via activation of STAT3 signaling, underscoring its potential as a therapeutic agent for managing MI and associated heart failure.


Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Humanos , Ratones , Animales , Ratas , Quimiocina CCL2/metabolismo , Infarto del Miocardio/metabolismo , Miocitos Cardíacos , Insuficiencia Cardíaca/metabolismo , Regeneración , Ratones Endogámicos C57BL , Apoptosis , Factor de Transcripción STAT3/metabolismo
3.
Clin Exp Hypertens ; 46(1): 2366270, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38864268

RESUMEN

OBJECTIVE: To elucidate the underlying mechanism by which the proliferation and migration abilities of human umbilical cord mesenchymal stem cells (hUC-MSCs) determine their therapeutic efficacy in rheumatoid arthritis treatment. METHODS: The DBA/1J mice were utilized to establish a collagen-induced RA (CIA) mouse model and to validate the therapeutic efficacy of hUC-MSCs transfected with CD151 siRNA. RNA-seq, QT-PCR and western blotting were utilized to evaluate the mRNA and protein levels of the PI3K/AKT pathway, respectively. RESULTS: IFN-γ significantly enhanced the proliferation and migration abilities of hUC-MSCs, up-regulating the expression of CD151, a gene related to cell proliferation and migration. Effective inhibition of this effect was achieved through CD151 siRNA treatment. However, IFN-γ did not affect hUC-MSCs differentiation or changes in cell surface markers. Additionally, transplantation of CD151-interfered hUC-MSCs (siRNA-CD151-hUC-MSCs) resulted in decreased colonization in the toes of CIA mice and worse therapeutic effects compared to empty vector treatment (siRNA-NC-hUC-MSCs). CONCLUSION: IFN-γ facilitates the proliferation and migration of hUC-MSCs through the CD151/PI3K/AKT pathway. The therapeutic efficacy of siRNA-CD151-hUC-MSCs was found to be inferior to that of siRNA-NC-hUC-MSCs.


Asunto(s)
Artritis Reumatoide , Movimiento Celular , Proliferación Celular , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Ratones Endogámicos DBA , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Animales , Artritis Reumatoide/terapia , Artritis Reumatoide/metabolismo , Ratones , Células Madre Mesenquimatosas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos , Fosfatidilinositol 3-Quinasas/metabolismo , Humanos , Interferón gamma/metabolismo , Cordón Umbilical/citología , Artritis Experimental/terapia , Artritis Experimental/metabolismo , Masculino
4.
World J Surg Oncol ; 21(1): 363, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37993849

RESUMEN

OBJECTIVE: To investigate the relationship between suprasellar extension (SSE) and intracranial infection after endoscopic endonasal transsphenoidal approach (EETA) for pituitary adenoma resection. METHODS: We retrospectively analyzed 94 patients with suprasellar extended pituitary adenoma admitted to the Department of Neurosurgery of the Affiliated Hospital of Guilin Medical College from January 2018 to December 2021. We measured the preoperative magnetic resonance sagittal SSE and collected clinical data and divided the patients into groups according to the presence of postoperative intracranial infection. The critical value for the SSE was calculated by using a working characteristic curve for the subjects. The risk factors for intracranial infection after EETA resection of pituitary adenomas were analyzed by multivariate regression analysis. RESULTS: Among the 94 patients, 12 cases (12.8%) were placed in the infection group and 82 cases (87.2%) in the non-infection group. The cut-off value for the SSE in the sagittal position was 15.6 mm, the sensitivity was 75%, the specificity was 87.8%, and the area under the curve (AUC) was 0.801. The coronary cut-off value for the SSE was 15.8 mm, the sensitivity was 66.7%, the specificity was 79.3%, and the AUC was 0.787. The SSE values in the sagittal and coronal positions were correlated with postoperative intracranial infection (P < 0.05). After univariate analysis, those with significant differences were included in the multivariate regression analysis. It was concluded that the extension distance of the tumor above the sella in the sagittal position was ≥ 15.6 mm, the tumor texture was hard, and the postoperative cerebrospinal fluid leakage were the independent risk factors for intracranial infection after EETA resection of suprasellar extended pituitary tumors (P < 0.05). CONCLUSIONS: The value of SSE on sagittal MRI can predict intracranial infection in patients with suprasellar extended pituitary adenoma after endoscopic endonasal transsphenoidal resection. This finding recommends neurosurgeons pay more attention to the imaging characteristics of pituitary adenomas and select appropriate treatment plans in combination with the intraoperative conditions to reduce the incidence of intracranial infection.


Asunto(s)
Adenoma , Neoplasias Hipofisarias , Humanos , Neoplasias Hipofisarias/cirugía , Neoplasias Hipofisarias/patología , Estudios Retrospectivos , Hueso Esfenoides/patología , Resultado del Tratamiento , Endoscopía/métodos , Adenoma/diagnóstico por imagen , Adenoma/cirugía , Adenoma/patología , Complicaciones Posoperatorias/etiología
5.
Clin Exp Hypertens ; 45(1): 2245580, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37641972

RESUMEN

OBJECTIVE: To investigate whether GRK4 regulates the phosphorylation and function of renal CCKBR. METHODS: GRK4 A142V transgenic mice were used as an animal model of enhanced GRK4 activity, and siRNA was used to silence the GRK4 gene to investigate the regulatory effect of GRK4 on CCKBR phosphorylation and function. Finally, the co-localization and co-connection of GRK4 and CCKBR in RPT cells were observed by laser confocal microscopy and immunoprecipitation to explore the mechanism of GRK4 regulating CCKBR. RESULTS: Gastrin infusion significantly increased urinary flow and sodium excretion rates in GRK4 WT mice (P < .05). GRK4 siRNA did not affect CCKBR protein expression in WKY RPT cells and SHR RPT cells, but remarkably reduced CCKBR phosphorylation in WKY and SHR RPT cells (P < .05). The inhibitory effect of gastrin on Na+-K+ -ATPase activity in WKY RPT cells was further enhanced by the reduction of GRK4 expression (P < .05), while GRK4 siRNA restored the inhibitory effect of gastrin on Na+-K+ -ATPase activity in SHR RPT cells. Laser confocal and Co-immunoprecipitation results showed that GRK4 and CCKBR co-localized in cultured RPT cells' cytoplasm. CONCLUSION: GRK4 participates in the development of hypertension by regulating the phosphorylation of renal CCKBR leading to impaired CCKBR function and water and sodium retention. Knockdown of GRK4 restored the function of CCKBR. The enhanced co-connection between GRK4 and CCKBR may be an important reason for the hyperphosphorylation of GRK4 and CCKBR involved in the pathogenesis of hypertension.


Asunto(s)
Hipertensión , Receptor de Colecistoquinina B , Animales , Ratones , Gastrinas/farmacología , Hipertensión/genética , ARN Interferente Pequeño , Sodio , Adenosina Trifosfatasas
6.
Metab Brain Dis ; 37(8): 2915-2924, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35960460

RESUMEN

Alzheimer's disease (AD) is a high incidence neurodegenerative disease. Emerging evidence suggests that circular RNAs (circRNAs) play an important modulator in the pathogenesis of AD. The aim of this paper was to reconnoiter the effects of circular RNA_0003611 (circ_0003611) on Aß-triggered neuronal injury in AD. In this work, the abundance of circ_0003611 was augmented in AD patients and SH-SY5Y and SK-N-SH cells treated with Aß. Aß-mediated cell proliferation, apoptosis, inflammatory response, oxidative stress, and glycolysis were abolished through circ_0003611 silencing. Circ_0003611 worked as a miR-383-5p sponge, and the protective role of circ_0003611 absence on Aß-triggered neuronal injury was overturned by releasing miR-383-5p. Meanwhile, miR-383-5p directly targeted KIF1B, and miR-383-5p upregulation might relieve Aß-triggered neuronal injury by reducing KIF1B expression. Mechanical analysis discovered that circ_0003611 served as a sponge of miR-383-5p to impact KIF1B expression. These findings indicated that circ_0003611 improved Aß-triggered neuronal injury in AD through targeting the miR-383-5p/KIF1B axis, which might deliver innovative therapy targeting for AD.


Asunto(s)
Enfermedad de Alzheimer , MicroARNs , Neuroblastoma , Enfermedades Neurodegenerativas , Humanos , Enfermedad de Alzheimer/genética , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , Apoptosis , Proliferación Celular , Estrés Oxidativo , Cinesinas
7.
Mar Drugs ; 20(2)2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35200643

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is highly concerning as a principal infection pathogen. The investigation of higher effective natural anti-MRSA agents from marine Streptomyces parvulus has led to the isolation of actinomycin D, that showed potential anti-MRSA activity with MIC and MBC values of 1 and 8 µg/mL, respectively. Proteomics-metabolomics analysis further demonstrated a total of 261 differential proteins and 144 differential metabolites induced by actinomycin D in MRSA, and the co-mapped correlation network of omics, indicated that actinomycin D induced the metabolism pathway of producing the antibiotic sensitivity in MRSA. Furthermore, the mRNA expression levels of the genes acnA, ebpS, clfA, icd, and gpmA related to the key differential proteins were down-regulated measured by qRT-PCR. Molecular docking predicted that actinomycin D was bound to the targets of the two key differential proteins AcnA and Icd by hydrogen bonds and interacted with multiple amino acid residues of the proteins. Thus, these findings will provide a basic understanding to further investigation of actinomycin D as a potential anti-MRSA agent.


Asunto(s)
Antibacterianos/farmacología , Dactinomicina/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Streptomyces/metabolismo , Antibacterianos/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Dactinomicina/aislamiento & purificación , Metabolómica , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Proteómica
8.
Eur Heart J ; 42(14): 1415-1430, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33280021

RESUMEN

AIMS: G protein-coupled receptor kinase 4 (GRK4) has been reported to play an important role in hypertension, but little is known about its role in cardiomyocytes and myocardial infarction (MI). The goal of present study is to explore the role of GRK4 in the pathogenesis and progression of MI. METHODS AND RESULTS: We studied the expression and distribution pattern of GRK4 in mouse heart after MI. GRK4 A486V transgenic mice, inducible cardiomyocyte-specific GRK4 knockout mice, were generated and subjected to MI with their control mice. Cardiac infarction, cardiac function, cardiomyocyte apoptosis, autophagic activity, and HDAC4 phosphorylation were assessed. The mRNA and protein levels of GRK4 in the heart were increased after MI. Transgenic mice with the overexpression of human GRK4 wild type (WT) or human GRK4 A486V variant had increased cardiac infarction, exaggerated cardiac dysfunction and remodelling. In contrast, the MI-induced cardiac dysfunction and remodelling were ameliorated in cardiomyocyte-specific GRK4 knockout mice. GRK4 overexpression in cardiomyocytes aggravated apoptosis, repressed autophagy, and decreased beclin-1 expression, which were partially rescued by the autophagy agonist rapamycin. MI also induced the nuclear translocation of GRK4, which inhibited autophagy by increasing HDAC4 phosphorylation and decreasing its binding to the beclin-1 promoter. HDAC4 S632A mutation partially restored the GRK4-induced inhibition of autophagy. MI caused greater impairment of cardiac function in patients carrying the GRK4 A486V variant than in WT carriers. CONCLUSION: GRK4 increases cardiomyocyte injury during MI by inhibiting autophagy and promoting cardiomyocyte apoptosis. These effects are mediated by the phosphorylation of HDAC4 and a decrease in beclin-1 expression.


Asunto(s)
Quinasa 4 del Receptor Acoplado a Proteína-G/fisiología , Infarto del Miocardio , Miocitos Cardíacos , Animales , Apoptosis , Autofagia , Beclina-1 , Histona Desacetilasas , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Remodelación Ventricular
9.
Molecules ; 27(14)2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35889255

RESUMEN

Dietary phytochemicals play an important role in the prevention and treatment of colon cancer. It is reported that group B of soyasaponin, derived from dietary pulses, has anti-colonic effects on some colon cancer cell lines. However, it is uncertain which specific soybean saponins play a role. In our study, as one of the group B soyasaponin, the anti-colon cancer activity of soyasaponins I (SsI) was screened, and we found that it had the inhibitory effect of proliferation on colon cancer cell lines HCT116 (IC50 = 161.4 µM) and LoVo (IC50 = 180.5 µM), but no effect on HT29 between 0-200 µM. Then, nine potential targets of SsI on colon cancer were obtained by network pharmacology analysis. A total of 45 differential metabolites were identified by metabolomics analysis, and the KEGG pathway was mainly enriched in the pathways related to the absorption and metabolism of amino acids. Finally, molecular docking analysis predicted that SsI might dock with the protein of DNMT1, ERK1. The results indicated that the effect of SsI on HCT116 might be exerted by influencing amino acid metabolism and the estrogen signaling pathway. This study may provide the possibility for the application of SsI against colon cancer.


Asunto(s)
Neoplasias del Colon , Ácido Oleanólico , Saponinas , Neoplasias del Colon/tratamiento farmacológico , Humanos , Simulación del Acoplamiento Molecular , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacología , Fitoquímicos/farmacología , Saponinas/farmacología
10.
Pediatr Neurosurg ; 56(5): 407-415, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34175844

RESUMEN

BACKGROUND: This study aimed to investigate the clinical outcome and related risk factors of fetal lateral ventriculomegaly (VM). METHODS: A retrospective analysis was performed on 255 cases diagnosed as fetal VM. Prenatal imaging examination was carried out. The pregnancy outcomes were investigated through follow-up. According to the prognosis of children, they were divided into case group and control group. Multivariate logistic regression was used to analyze the factors influencing the prognosis of hydrocephalus. RESULTS: After excluding the cases with either loss of follow-up or incomplete information, 102 cases were followed up. Twelve cases with poor prognosis were set as the case group. According to the maternal age, gestational age, gender of children, and follow-up time, 3 cases were selected from the other 90 cases for each child in the case group, respectively, and selected as the control group. Paired comparative analysis was performed on 48 cases. Using prognosis as a dependent variable, multivariate logistic regression analysis of the statistically significant factors indicated that the change speed of width ratio (CSWR) and maximum lateral ventricular width (MW) were associated with fetal prognosis. CONCLUSIONS: Our results suggested that CSWR and MW may have the value of predicting fetal prognosis.


Asunto(s)
Hidrocefalia , Ultrasonografía Prenatal , Niño , Femenino , Humanos , Hidrocefalia/diagnóstico por imagen , Hidrocefalia/epidemiología , Imagen por Resonancia Magnética , Embarazo , Pronóstico , Estudios Retrospectivos , Factores de Riesgo
11.
Circulation ; 136(9): 834-848, 2017 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-28642276

RESUMEN

BACKGROUND: Adult mammalian hearts have a limited ability to generate new cardiomyocytes. Proliferation of existing adult cardiomyocytes (ACMs) is a potential source of new cardiomyocytes. Understanding the fundamental biology of ACM proliferation could be of great clinical significance for treating myocardial infarction (MI). We aim to understand the process and regulation of ACM proliferation and its role in new cardiomyocyte formation of post-MI mouse hearts. METHODS: ß-Actin-green fluorescent protein transgenic mice and fate-mapping Myh6-MerCreMer-tdTomato/lacZ mice were used to trace the fate of ACMs. In a coculture system with neonatal rat ventricular myocytes, ACM proliferation was documented with clear evidence of cytokinesis observed with time-lapse imaging. Cardiomyocyte proliferation in the adult mouse post-MI heart was detected by cell cycle markers and 5-ethynyl-2-deoxyuridine incorporation analysis. Echocardiography was used to measure cardiac function, and histology was performed to determine infarction size. RESULTS: In vitro, mononucleated and bi/multinucleated ACMs were able to proliferate at a similar rate (7.0%) in the coculture. Dedifferentiation proceeded ACM proliferation, which was followed by redifferentiation. Redifferentiation was essential to endow the daughter cells with cardiomyocyte contractile function. Intercellular propagation of Ca2+ from contracting neonatal rat ventricular myocytes into ACM daughter cells was required to activate the Ca2+-dependent calcineurin-nuclear factor of activated T-cell signaling pathway to induce ACM redifferentiation. The properties of neonatal rat ventricular myocyte Ca2+ transients influenced the rate of ACM redifferentiation. Hypoxia impaired the function of gap junctions by dephosphorylating its component protein connexin 43, the major mediator of intercellular Ca2+ propagation between cardiomyocytes, thereby impairing ACM redifferentiation. In vivo, ACM proliferation was found primarily in the MI border zone. An ischemia-resistant connexin 43 mutant enhanced the redifferentiation of ACM-derived new cardiomyocytes after MI and improved cardiac function. CONCLUSIONS: Mature ACMs can reenter the cell cycle and form new cardiomyocytes through a 3-step process: dedifferentiation, proliferation, and redifferentiation. Intercellular Ca2+ signal from neighboring functioning cardiomyocytes through gap junctions induces the redifferentiation process. This novel mechanism contributes to new cardiomyocyte formation in post-MI hearts in mammals.


Asunto(s)
Infarto del Miocardio/patología , Miocitos Cardíacos/citología , Animales , Diferenciación Celular , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Conexina 43/antagonistas & inhibidores , Conexina 43/genética , Conexina 43/metabolismo , Citocinesis , Ecocardiografía , Uniones Comunicantes/metabolismo , Corazón/diagnóstico por imagen , Humanos , Ratones , Ratones Transgénicos , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Interferencia de ARN , Ratas , Transducción de Señal , Troponina I/metabolismo
12.
Clin Sci (Lond) ; 131(24): 2919-2932, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29162747

RESUMEN

After myocardial infarction (MI), the heart is difficult to repair because of great loss of cardiomyoctyes and lack of cardiac regeneration. Novel drug candidates that aim at reducing pathological remodeling and stimulating cardiac regeneration are highly desirable. In the present study, we identified if and how a novel porcupine inhibitor CGX1321 influenced MI and cardiac regeneration. Permanent ligation of left anterior descending (LAD) coronary artery was performed in mice to induce MI injury. Cardiac function was measured by echocardiography, infarct size was examined by TTC staining. Fibrosis was evaluated with Masson's trichrome staining and vimentin staining. As a result, CGX1321 administration blocked the secretion of Wnt proteins, and inhibited both canonical and non-canonical Wnt signaling pathways. CGX1321 improved cardiac function, reduced myocardial infarct size, and fibrosis of post-MI hearts. CGX1321 significantly increased newly formed cardiomyocytes in infarct border zone of post-MI hearts, evidenced by the increased EdU+ cardiomyocytes. Meanwhile, CGX1321 increased Ki67+ and phosphohistone H3 (PH3+) cardiomyocytes in culture, indicating enhanced cardiomyocyte proliferation. The mRNA microarray showed that CGX1321 up-regulated cell cycle regulating genes such as Ccnb1 and Ccne1 CGX1321 did not alter YAP protein phosphorylation and nuclear translocation in cardiomyocytes. In conclusion, porcupine inhibitor CGX1321 reduces MI injury by limiting fibrosis and promoting regeneration. It promotes cardiomyocyte proliferation by stimulating cell cycle regulating genes with a Hippo/YAP-independent pathway.


Asunto(s)
Aciltransferasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Proteínas de la Membrana/antagonistas & inhibidores , Infarto del Miocardio/tratamiento farmacológico , Miocardio/enzimología , Miocitos Cardíacos/efectos de los fármacos , Regeneración/efectos de los fármacos , Vía de Señalización Wnt/efectos de los fármacos , Aciltransferasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Fibrosis , Antígeno Ki-67/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Infarto del Miocardio/enzimología , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocardio/patología , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Fosfoproteínas/metabolismo , Fosforilación , Ratas , Factores de Tiempo , Regulación hacia Arriba , Proteínas Wnt/metabolismo , Proteína Wnt-5a/metabolismo , Proteínas Señalizadoras YAP
13.
J Cell Physiol ; 230(9): 2128-41, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25656550

RESUMEN

Mitochondrial (mt) dysfunction and oxidative stress are involved in the pathogenesis of ischemia/reperfusion (I/R)-injury. Lycopene, a lipophilic antioxidant found mainly in tomatoes and in other vegetables and fruits, can protect mtDNA against oxidative damage. However, the role of mtDNA in myocardial I/R-injury is unclear. In the present study, we aimed to determine if and how lycopene protects cardiomyocytes from I/R-injury. In both in vitro and in vivo studies, I/R-injury increased mt 8-hydroxyguanine (8-OHdG) content, decreased mtDNA content and mtDNA transcription levels, and caused mitochondrial dysfunction in cardiomyocytes. These effects of I/R injury on cardiomycoytes were blocked by pre-treatment with lycopene. MtDNA depletion alone was sufficient to induce cardiomyocyte death. I/R-injury decreased the protein level of a key activator of mt transcription, mitochondrial transcription factor A (Tfam), which was blocked by lycopene. The protective effect of lycopene on mtDNA was associated with a reduction in mitochondrial ROS production and stabilization of Tfam. In conclusion, lycopene protects cardiomyocytes from the oxidative damage of mtDNA induced by I/R-injury.


Asunto(s)
Carotenoides/administración & dosificación , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Miocitos Cardíacos/patología , Estrés Oxidativo/efectos de los fármacos , Animales , Antioxidantes/administración & dosificación , Daño del ADN/efectos de los fármacos , ADN Mitocondrial/efectos de los fármacos , ADN Mitocondrial/genética , Licopeno , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/efectos de los fármacos , Oxidación-Reducción , Ratas
14.
Mol Cancer ; 14: 154, 2015 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-26265437

RESUMEN

BACKGROUND: We aimed to investigate whether miRNA-1908 is an oncogene in human glioblastoma and find the possible mechanism of miR-1908. METHODS: We investigated the growth potentials of miRNA-1908-overexpressing SW-1783 cells in vitro and in vivo. In order to identify the target molecule of miRNA-1908, a luciferase reporter assay was performed, and the corresponding downstream signaling pathway was examined using immunohistochemistry of human glioblastoma tissues. We also investigated the miRNA-1908 expression in 34 patients according to the postoperative risk of recurrence. RESULTS: The overexpression of miRNA-1908 significantly promoted anchorage-independent growth in vitro and significantly increased the tumor forming potential in vivo. MiRNA-1908 significantly suppressed the luciferase activity of mRNA combined with the PTEN 3'-UTR. Furthermore, the expression levels of miRNA-1908 were significantly increased in the patients with a high risk of recurrence compared to that observed in the low-risk patients, and this higher expression correlated with a poor survival. CONCLUSIONS: miRNA-1908 functions as an oncogene in glioblastoma by repressing the PTEN pathway. MiR-1908 is a potential new molecular marker for predicting the risk of recurrence and prognosis of glioblastoma.


Asunto(s)
Glioblastoma/genética , MicroARNs/genética , Oncogenes/genética , Fosfohidrolasa PTEN/genética , Proteínas Supresoras de Tumor/genética , Adulto , Anciano , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Glioblastoma/metabolismo , Glioblastoma/mortalidad , Glioblastoma/patología , Glioblastoma/terapia , Xenoinjertos , Humanos , Masculino , Persona de Mediana Edad , Fosfohidrolasa PTEN/metabolismo , Pronóstico , Transducción de Señal , Proteínas Supresoras de Tumor/metabolismo
15.
Circ Res ; 113(3): 288-300, 2013 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-23694817

RESUMEN

RATIONALE: Transplantation of stem cells into damaged hearts has had modest success as a treatment for ischemic heart disease. One of the limitations is the poor stem cell survival in the diseased microenvironment. Prolyl hydroxylase domain protein 2 (PHD2) is a cellular oxygen sensor that regulates 2 key transcription factors involved in cell survival and inflammation: hypoxia-inducible factor and nuclear factor-κB. OBJECTIVE: We studied whether and how PHD2 silencing in human adipose-derived stem cells (ADSCs) enhances their cardioprotective effects after transplantation into infarcted hearts. METHODS AND RESULTS: ADSCs were transduced with lentiviral short hairpin RNA against prolyl hydroxylase domain protein 2 (shPHD2) to silence PHD2. ADSCs, with or without shPHD2, were transplanted after myocardial infarction in mice. ADSCs reduced cardiomyocyte apoptosis, fibrosis, and infarct size and improved cardiac function. shPHD2-ADSCs exerted significantly more protection. PHD2 silencing induced greater ADSC survival, which was abolished by short hairpin RNA against hypoxia-inducible factor-1α. Conditioned medium from shPHD2-ADSCs decreased cardiomyocyte apoptosis. Insulin-like growth factor-1 (IGF-1) levels were significantly higher in the conditioned medium of shPHD2-ADSCs versus ADSCs, and depletion of IGF-1 attenuated the cardioprotective effects of shPHD2-ADSC-conditioned medium. Nuclear factor-κB activation was induced by shPHD2 to induce IGF-1 secretion via binding to IGF-1 gene promoter. CONCLUSIONS: PHD2 silencing promotes ADSCs survival in infarcted hearts and enhances their paracrine function to protect cardiomyocytes. The prosurvival effect of shPHD2 on ADSCs is hypoxia-inducible factor-1α dependent, and the enhanced paracrine function of shPHD2-ADSCs is associated with nuclear factor-κB-mediated IGF-1 upregulation. PHD2 silencing in stem cells may be a novel strategy for enhancing the effectiveness of stem cell therapy after myocardial infarction.


Asunto(s)
Tejido Adiposo/metabolismo , Silenciador del Gen/fisiología , Infarto del Miocardio/genética , Infarto del Miocardio/cirugía , Comunicación Paracrina/genética , Procolágeno-Prolina Dioxigenasa/biosíntesis , Trasplante de Células Madre , Tejido Adiposo/citología , Animales , Supervivencia Celular/genética , Células Cultivadas , Humanos , Prolina Dioxigenasas del Factor Inducible por Hipoxia , Masculino , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/enzimología , Procolágeno-Prolina Dioxigenasa/genética , ARN Interferente Pequeño/biosíntesis , ARN Interferente Pequeño/genética , Trasplante de Células Madre/métodos
17.
Cell Death Dis ; 15(4): 250, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582754

RESUMEN

Mesenchymal stem cells (MSCs) are widely distributed pluripotent stem cells with powerful immunomodulatory capacity. MSCs transplantation therapy (MSCT) is widely used in the fields of tissue regeneration and repair, and treatment of inflammatory diseases. Apoptosis is an important way for tissues to maintain cell renewal, but it also plays an important role in various diseases. And many studies have shown that MSCs improves the diseases by regulating cell apoptosis. The regulation of MSCs on apoptosis is double-sided. On the one hand, MSCs significantly inhibit the apoptosis of diseased cells. On the other hand, MSCs also promote the apoptosis of tumor cells and excessive immune cells. Furthermore, MSCs regulate apoptosis through multiple molecules and pathways, including three classical apoptotic signaling pathways and other pathways. In this review, we summarize the current evidence on the regulation of apoptosis by MSCs.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Transducción de Señal , Apoptosis , Células Madre Mesenquimatosas/metabolismo
18.
Photodiagnosis Photodyn Ther ; 48: 104231, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38821238

RESUMEN

BACKGROUND: Chordoma is a rare congenital low-grade malignant tumor characterized by infiltrative growth. It often tends to compress important intracranial nerves and blood vessels, making its surgical treatment extremely difficult. Besides, the efficacy of radiotherapy and chemotherapy is limited. The photosensitizer hematoporphyrin derivative (HPD) can emit red fluorescence under 405 nm excitation and produce reactive oxygen species for tumor therapy under 630 nm excitation. Herein, we investigated the effects of the photosensitizer hematoporphyrin derivative (HPD) on different cell lines of chordoma and xenograft tumors under 405 nm and 630 nm excitation. METHODS: The photosensitizer hematoporphyrin derivative (HPD) and Two different chordoma cell lines (U-CH1, JHC7) were used for the test. The in vitro experiments were as follows: (1) the fluorescence intensity emitted by chordoma cells excited by different 405 nm light intensities was observed under a confocal microscope; (2) the Cell Counting Kit-8 (CCK-8) assay was performed to detect the effects of different photosensitizer concentrations and 630 nm light energy densities on the activity of chordoma cells. In the in vivo experiments, (3) Fluorescence visualization of chordoma xenograft tumors injected with photosensitizer via tail vein under 405 nm excitation; (4) Impact of 630 nm excitation of photosensitizer on the growth of chordoma xenograft tumors. RESULTS: (1) The photosensitizers in chordoma cells and chordoma xenografts of nude mice were excited by 405 nm to emit red fluorescence; (2) 630 nm excitation photosensitizer reduces chordoma cell activity and inhibits chordoma xenograft tumor growth in chordoma nude mice. CONCLUSION: Photodynamic techniques mediated by the photosensitizer hematoporphyrin derivatives can be used for the diagnosis and treatment of chordoma.

19.
Int J Biol Macromol ; 267(Pt 1): 131574, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615857

RESUMEN

Caulerpa lentillifera is rich in polysaccharides, and its polysaccharides show a significant effect in different biological activities including anti-cancer activity. As an edible algae-derived polysaccharide, exploring the role of colon cancer can better develop the application from a dietary therapy perspective. However, more in-depth studies of C. lentillifera polysaccharide on anti-colon cancer activity and mechanism are needed. In this study, we found that Caulerpa lentillifera polysaccharides (CLP) showed potential anti-colon cancer effect on human colon cancer cell HT29 in monolayer (IC50 = 1.954 mg/mL) and spheroid (IC50 = 0.402 mg/mL). Transcriptomics and metabolomics analyses revealed that CLP had an inhibitory effect on HT29 3D spheroid cells by activating aminoacyl-tRNA biosynthesis as well as arginine and proline metabolism pathways. Furthermore, the anti-colon cancer effects of CLP were confirmed through other human colon cancer cell HCT116 and LoVo in monolayer cells (IC50 = 1.890 mg/mL and 1.437 mg/mL, respectively) and 3D spheroid cells (IC50 = 0.344 mg/mL and 0.975 mg/mL, respectively), and three patient-derived organoids with IC50 values of 6.333-8.780 mg/mL. This study provided basic data for the potential application of CLP in adjuvant therapeutic food for colon cancer on multiple levels, while further investigation of detailed mechanism in vivo was still required.


Asunto(s)
Caulerpa , Neoplasias del Colon , Algas Comestibles , Polisacáridos , Esferoides Celulares , Humanos , Polisacáridos/farmacología , Polisacáridos/química , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Caulerpa/química , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Técnicas de Cultivo Tridimensional de Células/métodos , Proliferación Celular/efectos de los fármacos , Células HT29 , Línea Celular Tumoral , Células HCT116 , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
20.
Int J Surg ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38752515

RESUMEN

BACKGROUND: Traumatic brain injury (TBI) is one of the diseases with high disability and mortality worldwide. Recent studies have shown that TBI-related factors may change the complex balance between bleeding and thrombosis, leading to coagulation disorders. The aim of this retrospective study was to investigate the prediction of coagulopathy and subdural hematoma thickness at admission using the Glasgow Outcome Scale (GOS) in patients with severe TBI at 6 months after discharge. METHODS: In this retrospective cohort study, a total of 1,006 patients with severe TBI in large medical centers in three different provinces of China from June 2015 to June 2021 were enrolled after the exclusion criteria, and 800 patients who met the enrollment criteria were included. A receiver operating characteristic (ROC) curve was used to determine the best cut-off values of platelet (PLT), international normalized ratio (INR), activated partial thromboplastin time (APTT), and subdural hematoma (SDH) thickness. The ROC curve, nomogram, calibration curve, and the decision curve were used to evaluate the predictive effect of the coagulopathy and Coagulopathy-SDH(X1) models on the prognoses of patients with severe TBI, and the importance of predictive indicators was ranked by machine learning. RESULTS: Among the patients with severe TBI on admission, 576/800 (72%) had coagulopathy, 494/800 (61%) had SDH thickness ≥14.05 mm, and 385/800 (48%) had coagulopathy combined with SDH thickness ≥14.05 mm. Multivariate logistic regression analyses showed that age, pupil, brain herniation, WBC, CRP, SDH, coagulopathy, and X1 were independent prognostic factors for GOS after severe TBI. Compared with other single indicators, X1 as a predictor of the prognosis of severe TBI was more accurate. The GOS of patients with coagulopathy and thick SDH (X1, 1 point) at 6 months after discharge was significantly worse than that of patients with coagulopathy and thin SDH (X1, 2 points), patients without coagulopathy and thick SDH (X1, 3 point), and patients without coagulopathy and thin SDH (X1, 4 points). In the training group, the C-index based on the coagulopathy nomogram was 0.900. The C-index of the X1-based nomogram was 0.912. In the validation group, the C-index based on the coagulopathy nomogram was 0.858. The C-index of the X1-based nomogram was 0.877. Decision curve analysis also confirmed that the X1-based model had a higher clinical net benefit of GOS at 6 months after discharge than the coagulopathy-based model in most cases, both in the training and validation groups. In addition, compared with the calibration curve based on the coagulopathy model, the prediction of the X1 model-based calibration curve for the probability of GOS at 6 months after discharge showed better agreement with actual observations. Machine learning compared the importance of each independent influencing factor in the evaluation of GOS prediction after TBI, with results showing that the importance of X1 was better than that of coagulopathy alone. CONCLUSION: Coagulopathy combined with SDH thickness could be used as a new, accurate, and objective clinical predictor, and X1, based on combining coagulopathy with SDH thickness could be used to improve the accuracy of GOS prediction in patients with TBI, 6 months after discharge.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA