Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Environ Manage ; 344: 118453, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37354585

RESUMEN

Additives were widely investigated to retain the nutrients and mitigate the greenhouse gas emissions (GHGs) during manure composting. However, the sustained effects of additives on the GHGs emissions following incorporation of composts to soil were scarcely explored. This study evaluated the effects of bentonite added at the beginning of pig manure composting on the GHGs emissions during two successive processes, i.e., composting and soil incubation amended with composting products. Addition of bentonite did not hinder the composting process and alter the total CO2 emission. On the other hand, reduction by about 17% and 29% for CH4 and N2O emission, respectively, was achieved in the presence of bentonite during composting. Incorporation of the final composting products to soil enhanced significantly the soil C and N of various forms, and gas emissions of CO2 and N2O. However, no significant differences were observed between bentonite-manure co-compost and manure-only compost application except for the N2O emission. Compared to the manure-only compost, compost amended with bentonite reduced N2O loss by around 6.8%, but not statistically significant. This study confirmed that addition of bentonite at the composting stage can mitigate the GHGs emission considering both composting and compost application stages, with all reductions occurring at the composting stage.


Asunto(s)
Compostaje , Gases de Efecto Invernadero , Animales , Porcinos , Gases de Efecto Invernadero/análisis , Bentonita , Estiércol , Dióxido de Carbono/análisis , Nitrógeno/análisis , Metano/análisis , Suelo , Óxido Nitroso/análisis
2.
Ying Yong Sheng Tai Xue Bao ; 25(5): 1340-8, 2014 May.
Artículo en Zh | MEDLINE | ID: mdl-25129934

RESUMEN

Dynamics of soil organic carbon mineralization affected by long-term fertilizations and temperature in relation to different soil carbon fractions were investigated in paddy soils. Soil samples were collected from the plough layer of 3 long-term national experimental sites in Xinhua, Ningxiang and Taojiang counties of Hunan Province. Mineralization of soil organic C was estimated by 33-day aerobic incubation at different temperatures of 10, 20 and 30 degrees C. The results showed that the rates of CO2 production were higher during the earlier phase (0-13 d) in all treatments, and then decreased according to a logarithm function. Higher incubation temperature strengthened C mineralization in the different treatments. The quantities of cumulative CO2 production in NPK with manure or straw treatments were greater than in inorganic fertilizers treatments. The Q10 values in the different soil treatments ranged from 1.01-1.53. There were significantly positive correlations between the Q10 values and soil total organic carbon (TOC), easy oxidation organic carbon (EOOC), humic acid carbon (C(HA)), fulvic acid carbon (CFA). The cumulative amount of mineralized C was significantly positively correlated with microbial biomass carbon (MBC) at 10 and 20 degrees C, but not significantly at 30 degrees C. Significant correlations were found between the cumulative amount of mineralized C and different soil carbon fractions and C(HA)/C(FA). The correlations of differ- ent soil carbon fractions with the ratio of cumulative mineralized C to TOC were negatively correlated at 10 degrees C, but not significantly at 20 and 30 degrees C. These results suggested that the application of NPK with manure or straw would be helpful to increase the sequestration of C in paddy soils and reduce its contribution of CO2 release in the atmosphere.


Asunto(s)
Carbono/análisis , Fertilizantes , Suelo/química , Temperatura , Biomasa , Sustancias Húmicas , Estiércol , Oryza , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA