RESUMEN
Genetic drivers of cancer can be dysregulated through epigenetic modifications of DNA. Although the critical role of DNA 5-methylcytosine (5mC) in the regulation of transcription is recognized, the functions of other non-canonical DNA modifications remain obscure. Here, we report the identification of novel N6-methyladenine (N6-mA) DNA modifications in human tissues and implicate this epigenetic mark in human disease, specifically the highly malignant brain cancer glioblastoma. Glioblastoma markedly upregulated N6-mA levels, which co-localized with heterochromatic histone modifications, predominantly H3K9me3. N6-mA levels were dynamically regulated by the DNA demethylase ALKBH1, depletion of which led to transcriptional silencing of oncogenic pathways through decreasing chromatin accessibility. Targeting the N6-mA regulator ALKBH1 in patient-derived human glioblastoma models inhibited tumor cell proliferation and extended the survival of tumor-bearing mice, supporting this novel DNA modification as a potential therapeutic target for glioblastoma. Collectively, our results uncover a novel epigenetic node in cancer through the DNA modification N6-mA.
Asunto(s)
Adenina/análogos & derivados , Neoplasias Encefálicas/patología , Metilación de ADN , Glioblastoma/patología , Adenina/análisis , Adenina/química , Adulto , Anciano , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/antagonistas & inhibidores , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/genética , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/metabolismo , Animales , Astrocitos/citología , Astrocitos/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidad , Hipoxia de la Célula , Niño , Epigenómica , Femenino , Glioblastoma/metabolismo , Glioblastoma/mortalidad , Heterocromatina/metabolismo , Histonas/metabolismo , Humanos , Estimación de Kaplan-Meier , Masculino , Ratones , Persona de Mediana Edad , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
The recent discovery of N6-methyladenine (N6-mA) in mammalian genomes suggests that it may serve as an epigenetic regulatory mechanism1. However, the biological role of N6-mA and the molecular pathways that exert its function remain unclear. Here we show that N6-mA has a key role in changing the epigenetic landscape during cell fate transitions in early development. We found that N6-mA is upregulated during the development of mouse trophoblast stem cells, specifically at regions of stress-induced DNA double helix destabilization (SIDD)2-4. Regions of SIDD are conducive to topological stress-induced unpairing of the double helix and have critical roles in organizing large-scale chromatin structures3,5,6. We show that the presence of N6-mA reduces the in vitro interactions by more than 500-fold between SIDD and SATB1, a crucial chromatin organizer that interacts with SIDD regions. Deposition of N6-mA also antagonizes SATB1 function in vivo by preventing its binding to chromatin. Concordantly, N6-mA functions at the boundaries between euchromatin and heterochromatin to restrict the spread of euchromatin. Repression of SIDD-SATB1 interactions mediated by N6-mA is essential for gene regulation during trophoblast development in cell culture models and in vivo. Overall, our findings demonstrate an unexpected molecular mechanism for N6-mA function via SATB1, and reveal connections between DNA modification, DNA secondary structures and large chromatin domains in early embryonic development.
Asunto(s)
Adenina/análogos & derivados , ADN/química , ADN/metabolismo , Desarrollo Embrionario , Proteínas de Unión a la Región de Fijación a la Matriz/antagonistas & inhibidores , Adenina/metabolismo , Animales , Emparejamiento Base , Desarrollo Embrionario/genética , Eucromatina/genética , Eucromatina/metabolismo , Femenino , Humanos , Masculino , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Ratones , Células Madre/citología , Células Madre/metabolismo , Termodinámica , Trofoblastos/citologíaRESUMEN
It has been widely accepted that 5-methylcytosine is the only form of DNA methylation in mammalian genomes. Here we identify N(6)-methyladenine as another form of DNA modification in mouse embryonic stem cells. Alkbh1 encodes a demethylase for N(6)-methyladenine. An increase of N(6)-methyladenine levels in Alkbh1-deficient cells leads to transcriptional silencing. N(6)-methyladenine deposition is inversely correlated with the evolutionary age of LINE-1 transposons; its deposition is strongly enriched at young (<1.5 million years old) but not old (>6 million years old) L1 elements. The deposition of N(6)-methyladenine correlates with epigenetic silencing of such LINE-1 transposons, together with their neighbouring enhancers and genes, thereby resisting the gene activation signals during embryonic stem cell differentiation. As young full-length LINE-1 transposons are strongly enriched on the X chromosome, genes located on the X chromosome are also silenced. Thus, N(6)-methyladenine developed a new role in epigenetic silencing in mammalian evolution distinct from its role in gene activation in other organisms. Our results demonstrate that N(6)-methyladenine constitutes a crucial component of the epigenetic regulation repertoire in mammalian genomes.
Asunto(s)
Adenina/análogos & derivados , Metilación de ADN , Epigénesis Genética/genética , Células Madre Embrionarias de Ratones/metabolismo , Adenina/metabolismo , Histona H2a Dioxigenasa, Homólogo 1 de AlkB , Animales , Diferenciación Celular/genética , Elementos Transponibles de ADN/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/deficiencia , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Elementos de Facilitación Genéticos/genética , Evolución Molecular , Silenciador del Gen , Elementos de Nucleótido Esparcido Largo/genética , Mamíferos/genética , Ratones , Células Madre Embrionarias de Ratones/citología , Regulación hacia Arriba/genética , Cromosoma X/genética , Cromosoma X/metabolismoRESUMEN
DNA modifications are a major form of epigenetic regulation that eukaryotic cells utilize in concert with histone modifications. While much work has been done elucidating the role of 5-methylcytosine over the past several decades, only recently has it been recognized that N(6)-methyladenine (N6-mA) is present in quantifiable and biologically active levels in the DNA of eukaryotic cells. Unlike prokaryotes which utilize N6-mA to recognize "self" from "foreign" DNA, eukaryotes have been found to use N6-mA in varying ways, from regulating transposable elements to gene regulation in response to hypoxia and stress. In this review, we examine the current state of the N6-mA in research field, and the current understanding of the biochemical mechanisms which deposit and remove N6-mA from the eukaryotic genome.
Asunto(s)
Adenina/análogos & derivados , Eucariontes/metabolismo , Adenina/metabolismo , Animales , Metilación de ADN , Enzimas Reparadoras del ADN/metabolismo , Epigenómica , Eucariontes/genética , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Oxidorreductasas N-Desmetilantes/metabolismo , Estrés FisiológicoRESUMEN
N6-methyladenosine (m6A) RNA modification controls numerous cellular processes. To what extent these post-transcriptional regulatory mechanisms play a role in hematopoiesis has not been fully elucidated. We here show that the m6A demethylase alkB homolog 5 (ALKBH5) controls mitochondrial ATP production and modulates hematopoietic stem and progenitor cell (HSPC) fitness in an m6A-dependent manner. Loss of ALKBH5 results in increased RNA methylation and instability of oxoglutarate-dehydrogenase (Ogdh) messenger RNA and reduction of OGDH protein levels. Limited OGDH availability slows the tricarboxylic acid (TCA) cycle with accumulation of α-ketoglutarate (α-KG) and conversion of α-KG into L-2-hydroxyglutarate (L-2-HG). L-2-HG inhibits energy production in both murine and human hematopoietic cells in vitro. Impaired mitochondrial energy production confers competitive disadvantage to HSPCs and limits clonogenicity of Mll-AF9-induced leukemia. Our study uncovers a mechanism whereby the RNA m6A demethylase ALKBH5 regulates the stability of metabolic enzyme transcripts, thereby controlling energy metabolism in hematopoiesis and leukemia.
Asunto(s)
Leucemia , ARN , Animales , Humanos , Ratones , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Metabolismo Energético , Células Madre Hematopoyéticas/metabolismo , ARN/metabolismo , Estabilidad del ARN/genéticaRESUMEN
Acquired resistance to tyrosine kinase inhibitors (TKI), such as osimertinib used to treat EGFR-mutant lung adenocarcinomas, limits long-term efficacy and is frequently caused by non-genetic mechanisms. Here, we define the chromatin accessibility and gene regulatory signatures of osimertinib sensitive and resistant EGFR-mutant cell and patient-derived models and uncover a role for mammalian SWI/SNF chromatin remodeling complexes in TKI resistance. By profiling mSWI/SNF genome-wide localization, we identify both shared and cancer cell line-specific gene targets underlying the resistant state. Importantly, genetic and pharmacologic disruption of the SMARCA4/SMARCA2 mSWI/SNF ATPases re-sensitizes a subset of resistant models to osimertinib via inhibition of mSWI/SNF-mediated regulation of cellular programs governing cell proliferation, epithelial-to-mesenchymal transition, epithelial cell differentiation, and NRF2 signaling. These data highlight the role of mSWI/SNF complexes in supporting TKI resistance and suggest potential utility of mSWI/SNF inhibitors in TKI-resistant lung cancers.
Asunto(s)
Neoplasias Pulmonares , Animales , Humanos , Ensamble y Desensamble de Cromatina , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Cromatina , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Receptores ErbB/genética , Mutación , Mamíferos/genética , ADN Helicasas/genética , Proteínas Nucleares/genética , Factores de Transcripción/genéticaRESUMEN
Long non-coding RNAs (lncRNAs) are important regulators of development. In this issue of Developmental Cell, Wilson et al. utilize pluripotent stem cell models to demonstrate that a primate lncRNA, BANCR, is primarily expressed in fetal cardiomyocytes and promotes cell migration.
Asunto(s)
Retrovirus Endógenos , ARN Largo no Codificante , Animales , Movimiento Celular , Humanos , Miocitos Cardíacos , Primates , ARN Largo no Codificante/genéticaRESUMEN
Current approaches for Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-Associated-9 (Cas9)-mediated genome editing in human pluripotent stem (PS) cells mainly employ plasmids or ribonucleoprotein complexes. Here, we devise an improved transfection protocol of in vitro transcribed Cas9 mRNA and crRNA:tracrRNA duplex that can effectively generate indels in four genetic loci (two active and two inactive) and demonstrate utility in four human PS cell lines (one embryonic and three induced PS cell lines). Our improved protocol incorporating a Cas9-linked selection marker and a staggered transfection strategy promotes targeting efficiency up to 85% and biallelic targeting efficiency up to 76.5% of total mutant clones. The superior targeting efficiency and the non-integrative nature of our approach underscore broader applications in high-throughput arrayed CRISPR screening and in generating custom-made or off-the-shelf cell products for human therapy.
Asunto(s)
Sistemas CRISPR-Cas/genética , Mutagénesis/genética , Células Madre Pluripotentes/citología , ARN/genética , Edición Génica , Humanos , Mutación con Pérdida de Función/genética , ARN Guía de Kinetoplastida , TransfecciónRESUMEN
The advance of iPS technology holds great promise for regenerative medicine. Despite their global similarity to ES cells, fully reprogrammed iPS cells generated by current procedures still display clone-to-clone variations in molecular properties and developmental potentials, which calls for the development of reliable quality control assays. The differences in developmental potentials in iPS cells may be caused by epigenetic variations, such as histone variant H2A.X deposition. In this review, we discuss the current understanding of molecular variations of iPS cells and their implication on quality assessments.