Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
FASEB J ; 38(3): e23450, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38294796

RESUMEN

Oncolytic virus immunotherapy as a new tumor therapy has made remarkable achievements in clinical practice. And metabolic reprogramming mediated by oncolytic virus has a significant impact on the immune microenvironment. This review summarized the reprogramming of host cell glucose metabolism, lipid metabolism, oxidative phosphorylation, and glutamine metabolism by oncolytic virus and illustrated the effects of metabolic reprogramming on the immune microenvironment. It was found that oncolytic virus-induced reprogramming of glucose metabolism in tumor cells has both beneficial and detrimental effects on the immune microenvironment. In addition, oncolytic virus can promote fatty acid synthesis in tumor cells, inhibit oxidative phosphorylation, and promote glutamine catabolism, which facilitates the anti-tumor immune function of immune cells. Therefore, targeted metabolic reprogramming is a new direction to improve the efficacy of oncolytic virus immunotherapy.


Asunto(s)
Glutamina , Virus Oncolíticos , Reprogramación Metabólica , Adipogénesis , Glucosa
2.
Cell Commun Signal ; 20(1): 134, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36050738

RESUMEN

BACKGROUND: Apoptin, as a tumor-specific pro-apoptotic protein, plays an important anti-tumoral role, but its mechanism of autophagy activation and the interaction between autophagy and apoptosis have not been accurately elucidated. Here, we studied the mechanism of apoptin-induced apoptosis and autophagy and the interaction between two processes. METHODS: Using crystal violet staining and the CCK-8 assay, we analyzed the effect of apoptin in the inhibition of liver cancer cells in vitro and analyzed the effect of inhibiting liver cancer in vivo by establishing a nude mouse tumor model. Flow cytometry and fluorescence staining were used to analyze the main types of apoptin-induced apoptosis and autophagy. Subsequently, the relationship between the two events was also analyzed. Flow cytometry was used to analyze the effect of ROS on apoptin-mediated apoptosis and autophagy mediated by apoptin. The effect of ROS on two phenomena was analyzed. Finally, the role of key genes involved in autophagy was analyzed using gene silencing. RESULTS: The results showed that apoptin can significantly increase the apoptosis and autophagy of liver cancer cells, and that apoptin can cause mitophagy through the increase in the expression of NIX protein. Apoptin can also significantly increase the level of cellular ROS, involved in apoptin-mediated autophagy and apoptosis of liver cancer cells. The change of ROS may be a key factor causing apoptosis and autophagy. CONCLUSION: The above results indicate that the increase in ROS levels after apoptin treatment of liver cancer cells leads to the loss of mitochondrial transmembrane potential, resulting in endogenous apoptosis and mitophagy through the recruitment of NIX. Therefore, ROS may be a key factor connecting endogenous apoptosis and autophagy induced by apoptin in liver cancer cells. Video abstract.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Apoptosis , Proteínas de la Cápside , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Ratones , Ratones Desnudos , Mitofagia , Especies Reactivas de Oxígeno
3.
Appl Microbiol Biotechnol ; 102(3): 1145-1154, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29189898

RESUMEN

Porcine reproductive and respiratory syndrome (PRRS) is almost always caused by the North American strain of PRRS virus (PRRSV) in China; the European genotype of PRRSV has emerged in China. The mixed infection of PRRSV and Porcine circovirus type 2 virus (PCV2) are always found in pigs and PRRSV-augmented PCV2 replication and serious clinical symptoms. Current vaccines cannot protect mixed European PRRSV and PCV2 infections. Therefore, the development of a safe and effective new vaccine to prevent and control the mixed infection of European PRRSV and PCV2 is both urgent and necessary. In this study, we developed a recombinant vaccinia vaccine co-expressing the GP3 and GP5 proteins of European PRRSV and the ORF2 protein of PCV2 and evaluated the immunogenicity and its protective effects and its inactivated vaccine in pigs. The recombinant vaccinia vaccine and its inactivated vaccine both elicited significant humoral and cellular immune responses with a higher level of specific antibody responses and T-lymphocyte proliferation than the control group. Furthermore, the pigs inoculated with the recombinant vaccinia vaccine were completely protected against challenge with 105 TCID50 of European PRRSV strain LV. These data suggest that the recombinant vaccinia vaccine is a potential candidate vaccine against European PRRSV and PCV2.


Asunto(s)
Infecciones por Circoviridae/prevención & control , Proteína Receptora de AMP Cíclico/genética , Inmunogenicidad Vacunal , Síndrome Respiratorio y de la Reproducción Porcina/prevención & control , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Proteínas del Envoltorio Viral/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , China , Infecciones por Circoviridae/inmunología , Circovirus/genética , Circovirus/inmunología , Europa (Continente) , Vectores Genéticos , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Proteínas Recombinantes de Fusión/administración & dosificación , Proteínas Recombinantes de Fusión/inmunología , Porcinos , Virus Vaccinia/genética , Proteínas del Envoltorio Viral/genética
5.
Arch Virol ; 162(3): 863-866, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27885561

RESUMEN

An outbreak of severe pseudorabies virus (PRV) infection in farmed mink occurred in northern China in late 2014, causing significant economic losses in the local fur industry. Here, we report the first case of a PRV outbreak in mink in northeastern China, caused by feeding farmed mink with raw pork or organs contaminated by PRV. Mink infected with virulent PRV exhibited diarrhea, neurologic signs, and higher mortality, which can be misdiagnosed as highly pathogenic mink enteritis virus (MEV), canine distemper virus (CDV), and food poisoning. However, these were excluded as causative agents by PCR or bacteria isolation. The duration of disease was 3-7 days, and the mortality rate was 80-90%. PRV was characterized using indirect immunofluorescence assays (IFA) and electron microscopy (EM). Phylogenetic analysis based on full-length genome sequences and those of individual genes of this novel virus strain showed that it clustered in an independent branch with several other PRV isolates from China.


Asunto(s)
Alimentación Animal/virología , Herpesvirus Suido 1/aislamiento & purificación , Visón/virología , Seudorrabia/virología , Alimentación Animal/análisis , Animales , China/epidemiología , Contaminación de Alimentos/análisis , Herpesvirus Suido 1/clasificación , Herpesvirus Suido 1/genética , Herpesvirus Suido 1/fisiología , Filogenia , Seudorrabia/epidemiología , Seudorrabia/transmisión , Carne Roja/virología , Porcinos , Enfermedades de los Porcinos/epidemiología , Enfermedades de los Porcinos/virología
6.
BMC Vet Res ; 10: 128, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24916952

RESUMEN

BACKGROUND: The European (EU) genotype of porcine reproductive and respiratory syndrome virus (Genotype-I PRRSV) has recently emerged in China. The coexistence of Genotype-I and -II PRRSV strains could cause seriously affect PRRSV diagnosis and management. Current vaccines are not able to protect against PRRSV infection completely and have inherent drawbacks. Thus, genetically engineered vaccines, including DNA vaccine and live vector engineered vaccines, have been developed. This study aimed to determine the enhanced immune responses of mice inoculated with a DNA vaccine coexpressing GP3 and GP5 of a Genotype-I PRRSV. RESULTS: To evaluate the immunogenicity of GP3 and GP5 proteins from European-type PRRSV, three DNA vaccines, pVAX1-EU-ORF3-ORF5, pVAX1-EU-ORF3 and pVAX1-EU-ORF5, were constructed, which were based on a Genotype-I LV strain (GenBank ID: M96262). BALB/c mice were immunized with the DNA vaccines; delivered in the form of chitosan-DNA nanoparticles. To increase the efficiency of the vaccine, Quil A (Quillaja) was used as an adjuvant. GP3 and GP5-specific antibodies, neutralizing antibodies and cytokines (IL-2, IL-4, IL-10 and IFN gamma) from the immunized mice sera, and other immune parameters, were examined, including T-cell proliferation responses and subgroups of spleen T-lymphocytes. The results showed that ORF3 and ORF5 proteins of Genotype-I PRRSV induced GP3 and GP5-specific antibodies that could neutralize the virus. The levels of Cytokines IL-2, IL-4, IL-10, and IFN-γ of the experimental groups were significantly higher than those of control groups after booster vaccination (P < 0.05). The production of CD3+CD4+ and CD3+CD8+ T lymphocyte was also induced. T lymphocyte proliferation assays showed that the PRRSV LV strain virus could stimulate the proliferation of T lymphocytes in mice in the experimental group. CONCLUSIONS: Using Quil A as adjuvant, Genotype-I PRRSV GP3 and GP5 proteins produced good immunogenicity and reactivity. More importantly, better PRRSV-specific neutralizing antibody titers and cell-mediated immune responses were observed in mice immunized with the DNA vaccine co-expressing GP3 and GP5 proteins than in mice immunized with a DNA vaccine expressing either protein singly. The results of this study demonstrated that co-immunization with GP3 and GP5 produced a better immune response in mice.


Asunto(s)
Anticuerpos Antivirales/sangre , Virus del Síndrome Respiratorio y Reproductivo Porcino/metabolismo , Proteínas Virales/inmunología , Vacunas Virales/inmunología , Adyuvantes Inmunológicos , Animales , Anticuerpos Neutralizantes/sangre , Proliferación Celular , Quitosano , Genotipo , Interferón gamma/sangre , Interleucina-2/sangre , Ratones , Ratones Endogámicos BALB C , Nanopartículas , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Saponinas de Quillaja , Linfocitos T/fisiología , Vacunas de ADN/inmunología , Proteínas Virales/metabolismo
7.
Viruses ; 15(9)2023 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-37766224

RESUMEN

Midges are widely distributed globally and can transmit various human and animal diseases through blood-sucking. As part of this study, 259,300 midges were collected from four districts in Yunnan province, China, to detect the viral richness and diversity using metavirome analysis techniques. As many as 26 virus families were detected, and the partial sequences of bluetongue virus (BTV), dengue virus (DENV), and Getah virus (GETV) were identified by phylogenetic analysis and PCR amplification. Two BTV gene fragments, 866 bps for the VP2 gene of BTV type 16 and 655 bps for the VP5 gene of BTV type 21, were amplified. The nucleotide sequence identities of the two amplified BTV fragments were 94.46% and 98.81%, respectively, with two classical BTV-16 (GenBank: JN671907) and BTV-21 strains (GenBank: MK250961) isolated in Yunnan province. Furthermore, the BTV-16 DH2021 strain was successfully isolated in C6/36 cells, and the peak value of the copy number reached 3.13 × 107 copies/µL after five consecutive BHK-21 cell passages. Moreover, two 2054 bps fragments including the E gene of DENV genotype Asia II were amplified and shared the highest identity with the DENV strain isolated in New Guinea in 1944. A length of 656 bps GETV gene sequence encoded the partial capsid protein, and it shared the highest identity of 99.68% with the GETV isolated from Shandong province, China, in 2017. Overall, this study emphasizes the importance of implementing prevention and control strategies for viral diseases transmitted by midges in China.


Asunto(s)
Alphavirus , Virus de la Lengua Azul , Animales , Humanos , China/epidemiología , Filogenia , Asia , Proteínas de la Cápside/genética
8.
Viruses ; 15(3)2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36992334

RESUMEN

Japanese encephalitis virus (JEV), which uses a mosquito primary vector and swine as a reservoir host, poses a significant risk to human and animal health. JEV can be detected in cattle, goats and dogs. A molecular epidemiological survey of JEV was conducted in 3105 mammals from five species, swine, fox, racoon dog, yak and goat, and 17,300 mosquitoes from 11 Chinese provinces. JEV was detected in pigs from Heilongjiang (12/328, 3.66%), Jilin (17/642, 2.65%), Shandong (14/832, 1.68%), Guangxi (8/278, 2.88%) and Inner Mongolia (9/952, 0.94%); in goats (1/51, 1.96%) from Tibet; and mosquitoes (6/131, 4.58%) from Yunnan. A total of 13 JEV envelope (E) gene sequences were amplified in pigs from Heilongjiang (5/13), Jilin (2/13) and Guangxi (6/13). Swine had the highest JEV infection rate of any animal species, and the highest infection rates were found in Heilongjiang. Phylogenetic analysis indicated that the predominant strain in Northern China was genotype I. Mutations were found at residues 76, 95, 123, 138, 244, 474 and 475 of E protein but all sequences had predicted glycosylation sites at 'N154. Three strains lacked the threonine 76 phosphorylation site from non-specific (unsp) and protein kinase G (PKG) site predictions; one lacked the threonine 186 phosphorylation site from protein kinase II (CKII) prediction; and one lacked the tyrosine 90 phosphorylation site from epidermal growth factor receptor (EGFR) prediction. The aim of the current study was to contribute to JEV prevention and control through the characterization of its molecular epidemiology and prediction of functional changes due to E-protein mutations.


Asunto(s)
Culicidae , Virus de la Encefalitis Japonesa (Especie) , Virus de la Encefalitis Japonesa (Subgrupo) , Encefalitis Japonesa , Bovinos , Animales , Humanos , Porcinos , Perros , Virus de la Encefalitis Japonesa (Especie)/genética , Filogenia , China/epidemiología , Genotipo , Encefalitis Japonesa/epidemiología , Encefalitis Japonesa/veterinaria , Treonina/genética , Mamíferos
9.
Front Cell Infect Microbiol ; 12: 938576, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35846772

RESUMEN

To explore the Culex tritaeniorhynchuses-specific virome, 6400 C. tritaeniorhynchuses were collected in Honghe autonomous prefecture, China. Abundant virus sequences were obtained from 28 viral families using metavirome sequencing. Herein, several viruses in C. tritaeniorhynchuses virome were verified using the PCR technique, which covers Japanese encephalitis virus (JEV), Getah virus, and even Chikungunya virus (CHIKV). Seven JEV gene sequences were amplified successfully, of which JEV-China/CT2016E-1 shared the highest homology with the known JEV sequence isolated in Korea, 1946, with at least 96.1% nucleotide (nt) identity, which belonged to genotype III. Nine CHIKV gene sequences were amplified, which shared the highest with at least 93.0% nt identity with CHIKV from Thailand isolated in 2007, which was assigned to genotype Asian. Remarkably, CHIKV was isolated from C. tritaeniorhynchus in China for the first time. It was initially confirmed that the isolated virus CHIKV-China/CT2016-1 may increase infectivity after passaging in Vero cells from BHK-21 cells. Collectively, our study reveals the diversity, properties, and potential virus susceptibility dynamics of the C. tritaeniorhynchus virome and sheds new perspectives on the viral ecology in other important biological vectors.


Asunto(s)
Virus Chikungunya , Culex , Virus de la Encefalitis Japonesa (Especie) , Virus , Animales , Virus Chikungunya/genética , China , Chlorocebus aethiops , Humanos , Mosquitos Vectores , Filogenia , Células Vero
10.
Front Cell Infect Microbiol ; 12: 860559, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35321314

RESUMEN

Human adenovirus (HAdV) has a worldwide distribution and remains a major pathogen that leads to infections of the respiratory tract. No specific treatments or vaccines are yet available for HAdV infection. Sargassum fusiforme, an edible seaweed, has attracted a lot of attention for its various bioactivities. S. fusiforme has been reported to exhibit antiviral activity. However, research studies about its anti-HAdV activity are few. In this research, we found that S. fusiforme had low cytotoxicity and possessed anti-human adenovirus type 7 (HAdV7) activity in vitro, and the most effective ingredient was alginate. The time of addition assay demonstrated inhibitory effects that were observed in all life stages of the virus. In addition, we observed that the antiviral activity of alginate against HAdV7 infection might be closely related to the endoplasmic reticulum stress (ERS) pathway. Taken together, these results suggest that S. fusiforme extracts have potential application in the prevention and treatment of HAdV infection.


Asunto(s)
Sargassum , Virus , Adenoviridae , Antivirales/metabolismo , Antivirales/farmacología , Humanos , Sargassum/metabolismo
11.
Front Cell Infect Microbiol ; 12: 960507, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36304937

RESUMEN

To exploit the Rhinolophus sinicus-specific virome, 29 Rhinolophus sinicus were gathered in Lincang, China. Enriched viral sequences of 22 virus families were acquired by metavirome techniques. Hereby, the part of virome in Rhinolophus sinicus, including Chikungunya virus (CHIKV), Getah virus, and Japanese encephalitis virus (JEV) were validated by PCR. Five CHIKV viral sequences were amplified, among which CHIKV-China/B2016C-1 shared the highest homology to CHIKV isolated from Italy in 2007, with the genotype as African ECS. Eight JEV viral sequences were amplified, of which JEV-China/B2016E-1 shared the highest homology with at least 91.3% nt identity with the JEV sequence found in South Korea in 1988 and was classified as genotype III. Notably, JEV was isolated for the first time in Rhinolophus sinicus. The newly isolated JEV-China/B2016-1 could increase infectivity while passaging in Vero cells from BHK-21 cells. Overall, the research sheds insight into the diversity and viral susceptibility dynamics of the virome in Rhinolophus sinicus and reveals new light on the ecology of other important viral hosts.


Asunto(s)
Quirópteros , Culicidae , Virus de la Encefalitis Japonesa (Especie) , Virus , Animales , Chlorocebus aethiops , Viroma , Células Vero , Filogenia , Virus de la Encefalitis Japonesa (Especie)/genética , Genotipo , China
12.
Front Cell Infect Microbiol ; 12: 874003, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35846764

RESUMEN

Swab samples were collected from 34 pangolins in Guangxi Province, China. Metavirome sequencing and bioinformatics approaches were undertaken to determine the abundant viral sequences in the viromes. The results showed that the viral sequences belong to 24 virus taxonomic families. To verify the results, PCR combined with phylogenetic analysis was conducted. Some viral sequences including Japanese encephalitis virus (JEV), Getah virus (GETV), and chikungunya virus (CHIKV) were detected. On the basis of the metavirome analysis, seven segments belonging to JEV were further identified through PCR amplification. Sequence comparison showed that, among seven sequences, JEV-China/P2020E-1 displayed the highest nucleotide (80.6%), with the JEV isolated in South Korea, 1988, and all of which belonging to genotype III. Seven CHIKV sequences were detected, with the highest homology (80.6%) to the Aedes africanus in Côte d'Ivoire, 1993. Moreover, passage from BHK-21 to Vero cells makes the newly isolated CHIKV-China/P2020-1 more contagious. In addition, the newly verified GETV sequences shared 86.4% identity with the 1955 GETV isolated from Malaysia. Some sudden and recurrent viruses have also been observed from the virome of pangolin in Guangxi Province, China; hence, dissemination tests will be implemented in the future.


Asunto(s)
Alphavirus , Culicidae , Virus de la Encefalitis Japonesa (Especie) , Alphavirus/genética , Animales , China , Chlorocebus aethiops , Virus de la Encefalitis Japonesa (Especie)/genética , Humanos , Pangolines , Filogenia , Células Vero , Viroma
13.
Front Cell Infect Microbiol ; 12: 849662, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35223559

RESUMEN

We collected 5,500 mosquitoes belonging to six species in three locations in China. Their viromes were tested using metagenomic sequencing and bioinformatic analysis. The affluent viral sequences that were detected and annotated belong to 22 viral taxonomic families. Then, PCR was performed to confirm the results, followed by phylogenetic analysis. Herein, part of mosquito virome was identified, including chikungunya virus (CHIKV), Getah virus (GETV), and Ross river virus (RRV). After metagenomic analysis, seven CHIKV sequences were verified by PCR amplification, among which CHIKV-China/YN2018-1 had the highest homology with the CHIKV isolated in Senegal, 1983, with a nucleotide (nt) identity of at least 81%, belonging to genotype West Africa viral genes. Five GETV sequences were identified, which had a high homology with the GETV sequences isolated from Equus caballus in Japan, 1978, with a (nt) identity of at least 97%. The newly isolated virus CHIKV-China/YN2018-1 became more infectious after passage of the BHK-21 cell line to the Vero cell line. The newly identified RRV gene had the highest homology with the 2006 RRV isolate from Australia, with a (nt) identity of at least 94%. In addition, numerous known and unknown viruses have also been detected in mosquitoes from Yunnan province, China, and propagation tests will be carried out.


Asunto(s)
Fiebre Chikungunya , Culicidae , Virus , Animales , China , Caballos , Humanos , Filogenia , Virus del Río Ross/genética , Togaviridae , Viroma , Virus/genética
14.
Virus Res ; 291: 198177, 2021 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-33038460

RESUMEN

Seneca Valley virus (SVV) is a novel Picornaviridae that is closely associated with porcine idiopathic vesicular disease (PIVD). Here, a novel SVV strain (CH-GX-01-2019) was detected and isolated from swine in Guangxi Province, China. The complete genomic sequence of CH-GX-01-2019 exhibited 93.3-98.9 % identify with other SVV isolates at the nucleotide level. CH-GX-01-2019 showed the highest level of similarity (98.9 %) with Vietnamese strains. And CH-GX-01-2019 exhibited two consecutive amino acid mutations in VP1 gene. Phylogenetic analysis based on the complete genome and the VP1 gene showed that Chinese SVV isolates can be divided into three clusters. We analyzed the geographical distributions of SVV strains in China and found that the epidemiology of SVV in China is complicated; most strains are distributed predominantly in south and central China. Between 2015 and 2019, the dominant epidemic SVV isolates in China have changed from clusters 1 and 3 to cluster 2. CH-GX-01-2019 (cluster 3) is a recombinant strain from Colombia-2016 (cluster 2) and HB-CH-2016 (cluster 1). Our findings will enhance our understanding of the prevalence and genetic variation of SVV in the swine herds of China and provide important insights into the molecular epidemiology of SVV.


Asunto(s)
Evolución Molecular , Filogenia , Infecciones por Picornaviridae/epidemiología , Infecciones por Picornaviridae/veterinaria , Picornaviridae/genética , Enfermedades de los Porcinos/epidemiología , Animales , Línea Celular , China/epidemiología , Cricetinae , Granjas , Genoma Viral , Ganado/virología , Picornaviridae/clasificación , Picornaviridae/aislamiento & purificación , Infecciones por Picornaviridae/virología , Prevalencia , Recombinación Genética , Porcinos , Enfermedades de los Porcinos/virología , Secuenciación Completa del Genoma
15.
Virus Res ; 276: 197807, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31707001

RESUMEN

The purpose of this study was to knock out two non-essential gene fragments (TC7L-TK2L and TJ2R) related to virulence, immunomodulation, and host range in the vaccinia virus Tian Tan strain (VTT), and combining with double-label screening and exogenous screening marker knockout techniques to construct attenuated strains with multiple gene deletions(rVTT-TC-TJ). The shuttle plasmids pSK-TC and pSK-TJ were constructed by designing 2 pairs of recombinant arms, combined with poxvirus early and late complex strong promoter pE/L and exogenous screening marker enhanced green fluorescent protein(EGFP). The results showed that knocking out the two gene fragments does not affect the replication ability of the virus and displays a good genetic stability. Furthermore, a series of in vivo and in vitro experiments demonstrate that although virulence of rVTT-TC-TJ is attenuated significantly, high immunogenicity was maintained. These results support the potential development of rVTT-TC-TJ as a safe viral vector or vaccine.


Asunto(s)
Eliminación de Gen , Virus Vaccinia/genética , Virulencia/genética , Animales , Línea Celular , Técnicas de Inactivación de Genes , Masculino , Ratones , Ratones Endogámicos BALB C , Conejos , Virus Vaccinia/patogenicidad , Virus Vaccinia/fisiología , Replicación Viral
16.
Vaccine ; 37(37): 5588-5595, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31399273

RESUMEN

For decades, an on-going concerted effort has been made to develop a universal DNA vaccine to combat the looming threat of a potential outbreak of the emerging Japanese encephalitis virus (JEV) infection. However, effective strategies are urgently required to counter poor immunogenicity and insufficient long-term protection. Recent reports have confirmed the critical role of autophagy in antigen presentation, long-term immune memory and immune responses against JEV. In this study, JEV prM and E protein with strong immunogenicity were fused with microtubule-associated protein 1 light chain 3 (LC3) encoding gene to construct an autophagy-mediated pJME-LC3 DNA vaccine. Researches indicated significant increase of autophagosomes or LC3 Ⅱ expression in pJME-LC3 transfected cells. Furthermore, prME-LC3 fused protein was observed co-localized with GFP-LC3 to autophagosomes, which means it was successfully targeted to autophagosomes. After immunizing with pJME-LC3, mice were detected highest proportion of CD3+CD8+ T lymphocytes, CD8+ effector memory T cells (TEMs) and JEV specific cytotoxic T lymphocyte (CTL) activity to eliminate JEV. pJME-LC3 also enhanced IgG2a antibody in serum and cytokines IFN-γ, IL-12 produced by splenocytes, thus skew toward Th1 type immune response by activating the JAK2/STAT1 signaling pathway and upregulating expression of transcription factor T-bet. Notably, mice immunized with pJME-LC3 showed highest survival rate and long-lasting neutralizing antibody when challenged with virulent JEV, which were consistent with augment in percentage of CD4+ central memory T cells (TCMs). In brief, our studies suggested that autophagy can be used as a optimization strategy to enhance JEV specific immune response and long-term immune memory. Our attempt will contribute towards future efforts to develop an efficacious JEV vaccine.


Asunto(s)
Autofagia/inmunología , Virus de la Encefalitis Japonesa (Especie)/inmunología , Encefalitis Japonesa/inmunología , Encefalitis Japonesa/prevención & control , Vacunas contra la Encefalitis Japonesa/inmunología , Vacunas de ADN/inmunología , Animales , Anticuerpos Antivirales/inmunología , Antígenos Virales/genética , Antígenos Virales/inmunología , Células CHO , Línea Celular , Cricetulus , Citocinas/metabolismo , Modelos Animales de Enfermedad , Encefalitis Japonesa/metabolismo , Femenino , Inmunización , Inmunogenicidad Vacunal , Inmunomodulación , Vacunas contra la Encefalitis Japonesa/administración & dosificación , Ratones , Proteínas Recombinantes de Fusión , Vacunas de ADN/administración & dosificación
17.
Vet Microbiol ; 239: 108490, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31767075

RESUMEN

Highly pathogenic porcine reproductive and respiratory syndrome (HP-PRRS) poses a significant threat to the pig industry, for which vaccination is considered to be an effective means of prevention and control. Here, we developed two recombinant Newcastle disease virus (NDV) LaSota-vectored PRRS candidate vaccines, rLaSota-GP5 and rLaSota-GP3-GP5, using reverse genetic techniques. The two recombinant viruses exhibited a high degree of genetic stability after 10 successive generations in chicken embryos. There was no significant difference in pathogenicity compared with the rLaSota parent strain in poultry, mice and pigs. The recombinant viruses could not be detected in the feeding environment of immunized pigs, but could be detected in the organs and tissues of pigs for no more than 10 days after immunization. Importantly, in contrast to rLaSota-GP5, rLaSota-GP3-GP5 elicited both significant humoral and cellular immune responses in pigs. In particular, the neutralizing antibody titer in the rLaSota-GP3-GP5 group was 1.51 times significantly higher than that of the commercial vaccine group at 42 days post-immunization. At the same time, there was significant difference in the level of IFN-γ between the rLaSota-GP3-GP5 group and the commercial vaccine group. Furthermore, the viral load in the organs and tissues of rLaSota-GP3-GP5-immunized pigs was substantially lower than that of unimmunized pigs after being challenged with HP-PRRS virus GD strain. These results suggest that rLaSota-GP3-GP5 is a safe and promising candidate vaccine, and there is potential for further development of a recombinant virus vaccine for PRRS using NDV.


Asunto(s)
Virus de la Enfermedad de Newcastle/genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Vacunas Sintéticas/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Antivirales/sangre , Porcinos
19.
Artículo en Inglés | MEDLINE | ID: mdl-30406038

RESUMEN

More than 6,000 mosquitoes of six species from six sites were collected and tested for their virome using metagenomics sequencing and bioinformatic analysis. The identified viral sequences belonged to more than 50 viral families. The results were verified by PCR of selected viruses in all mosquitoes, followed by phylogenetic analysis. In the present study, we identified the partial dengue virus (DENV), Zika virus (ZIKV), and Japanese encephalitis virus (JEV) sequences in mosquitoes. Metagenomic analysis and the PCR amplification revealed three DENV sequences, one of which encodes a partial envelope protein. Two ZIKV sequences both encoding partial nonstructural protein 3 and one JEV sequence encoding the complete envelope protein were identified. There was variability in the viral titers of the newly isolated virus JEV-China/YN2016-1 of different passage viruses. The newly identified Zika virus gene from ZIKV-China/YN2016-1 was an Asian genotype and shared the highest nucleotide sequence identity (97.1%) with a ZIKV sequence from Thailand isolated in 2004. Phylogenetic analysis of ZIKV-China/YN2016-1 and ZIKV-China/YN2016-2 with known Flavivirus genes indicated that ZIKV has propagated in Yunnan province, China.


Asunto(s)
Virus del Dengue/aislamiento & purificación , Genes Virales , Metagenómica/métodos , Mosquitos Vectores/virología , Virus Zika/aislamiento & purificación , Animales , China , Biología Computacional , Virus del Dengue/genética , Virus de la Encefalitis Japonesa (Especie)/genética , Virus de la Encefalitis Japonesa (Especie)/aislamiento & purificación , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , Virus Zika/genética
20.
Artículo en Inglés | MEDLINE | ID: mdl-30406041

RESUMEN

We collected 8,700 mosquitoes in three sites in China, which belonged to seven species. Their viromes were tested using metagenomic sequencing and bioinformatic analysis. The abundant viral sequences were detected and annotated belonging to more than 50 viral taxonomic families. The results were verified by PCR, followed by phylogenetic analysis. In the present study, we identified partial viral genes of dengue virus (DENV), a novel circovirus (CCV), densovirus (DNV), Japanese encephalitis virus (JEV), and Wuhan mosquito virus (WMV) in mosquitoes. Metagenomic analysis and PCR amplification revealed three DENV sequences, which were as homologous to the NS3 gene of DENV from Singapore isolated in 2005, with at least 91% nucleotide (nt) identity. Seven fragments of JEV encoding structural proteins were identified belonging to genotype I. They all shared high homology with structural protein genes of JEV isolated from Laos in 2009. The production of infectious virus particles of the newly isolated virus YunnanJEV2017-4 increased after passage from the BHK-21 cell line to the Vero cell line. Novel circovirus-related genes were identified and as being related to an unnamed gene of a mosquito circovirus (MCCV) sequence from the USA isolated in 2011, with at least 41% nt identity: this distant relationship suggests that the parent virus might belong to a novel circovirus genus. Additionally, numerous known viruses and some unknown viruses were also detected in mosquitoes from Yunnan province, China, which will be tested for propagation.


Asunto(s)
Biodiversidad , Metagenómica , Mosquitos Vectores/virología , Virus/clasificación , Virus/genética , Animales , China , Chlorocebus aethiops , Biología Computacional , Filogenia , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA