Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Opt Lett ; 49(13): 3620-3623, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38950224

RESUMEN

Diamond is a supreme material for mid-infrared (MIR) integrated photonics as it has a transparency window up to 20 µm that covers the entire fingerprint region. However, its relatively low refractive index poses a challenge in designing an MIR diamond functional device with both small footprint and high transmission efficiency. Here we propose and demonstrate the inverse design of an MIR diamond waveguide beam splitter operating at the wavelength of 15 µm with a small footprint of ∼15 µm × âˆ¼15 µm and a total transmission efficiency above 95%. Our work paves a new avenue for the design of compact and high-efficiency MIR diamond photonic devices.

2.
J Chem Phys ; 160(4)2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38284659

RESUMEN

Uncovering the mystery of efficient and directional energy transfer in photosynthetic organisms remains a critical challenge in quantum biology. Recent experimental evidence and quantum theory developments indicate the significance of quantum features of molecular vibrations in assisting photosynthetic energy transfer, which provides the possibility of manipulating the process by controlling molecular vibrations. Here, we propose and theoretically demonstrate efficient manipulation of photosynthetic energy transfer by using vibrational strong coupling between the vibrational state of a Fenna-Matthews-Olson (FMO) complex and the vacuum state of an optical cavity. Specifically, based on a full-quantum analytical model to describe the strong coupling effect between the optical cavity and molecular vibration, we realize efficient manipulation of energy transfer efficiency (from 58% to 92%) and energy transfer time (from 20 to 500 ps) in one branch of FMO complex by actively controlling the coupling strength and the quality factor of the optical cavity under both near-resonant and off-resonant conditions, respectively. Our work provides a practical scenario to manipulate photosynthetic energy transfer by externally interfering molecular vibrations via an optical cavity and a comprehensible conceptual framework for researching other similar systems.

3.
Nat Mater ; 21(10): 1121-1129, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35798946

RESUMEN

Graphene oxide (GO) and reduced GO possess robust mechanical, electrical and chemical properties. Their nanocomposites have been extensively explored for applications in diverse fields. However, due to the high flexibility and weak interlayer interactions of GO nanosheets, the flexural mechanical properties of GO-based composites, especially in bulk materials, are largely constrained, which hinders their performance in practical applications. Here, inspired by the amorphous/crystalline feature of the heterophase within nacreous platelets, we present a centimetre-sized, GO-based bulk material consisting of building blocks of GO and amorphous/crystalline leaf-like MnO2 hexagon nanosheets adhered together with polymer-based crosslinkers. These building blocks are stacked and hot-pressed with further crosslinking between the layers to form a GO/MnO2-based layered (GML) bulk material. The resultant GML bulk material exhibits a flexural strength of 231.2 MPa. Moreover, the material exhibits sufficient fracture toughness and strong impact resistance while being light in weight. Experimental and numerical analyses indicate that the ordered heterophase structure and synergetic crosslinking interactions across multiscale interfaces lead to the superior mechanical properties of the material. These results are expected to provide insights into the design of structural materials and potential applications of high-performance GO-based bulk materials in aerospace, biomedicine and electronics.


Asunto(s)
Grafito , Óxidos , Grafito/química , Compuestos de Manganeso , Óxidos/química , Polímeros/química
4.
Cytometry A ; 103(2): 162-167, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35938513

RESUMEN

There is a global concern about the safety of COVID-19 vaccines associated with platelet function. However, their long-term effects on overall platelet activity remain poorly understood. Here we address this problem by image-based single-cell profiling and temporal monitoring of circulating platelet aggregates in the blood of healthy human subjects, before and after they received multiple Pfizer-BioNTech (BNT162b2) vaccine doses over a time span of nearly 1 year. Results show no significant or persisting platelet aggregation trends following the vaccine doses, indicating that any effects of vaccinations on platelet turnover, platelet activation, platelet aggregation, and platelet-leukocyte interaction was insignificant.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Vacunas contra la COVID-19/efectos adversos , Vacuna BNT162 , COVID-19/prevención & control , Plaquetas , Vacunación/efectos adversos
5.
Cytometry A ; 103(6): 492-499, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36772915

RESUMEN

Microvascular thrombosis is a typical symptom of COVID-19 and shows similarities to thrombosis. Using a microfluidic imaging flow cytometer, we measured the blood of 181 COVID-19 samples and 101 non-COVID-19 thrombosis samples, resulting in a total of 6.3 million bright-field images. We trained a convolutional neural network to distinguish single platelets, platelet aggregates, and white blood cells and performed classical image analysis for each subpopulation individually. Based on derived single-cell features for each population, we trained machine learning models for classification between COVID-19 and non-COVID-19 thrombosis, resulting in a patient testing accuracy of 75%. This result indicates that platelet formation differs between COVID-19 and non-COVID-19 thrombosis. All analysis steps were optimized for efficiency and implemented in an easy-to-use plugin for the image viewer napari, allowing the entire analysis to be performed within seconds on mid-range computers, which could be used for real-time diagnosis.


Asunto(s)
COVID-19 , Trombosis , Humanos , Plaquetas , Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación
6.
Opt Express ; 31(4): 6917-6924, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36823937

RESUMEN

Fiber-optic sensors are an indispensable element of modern sensing technologies by virtue of their low cost, excellent electromagnetic immunity, and remote sensing capability. Optical Vernier effect is widely used to enhance sensitivity of fiber-optic sensors but requires bulky and complex cascaded interferometers. Here we propose and experimentally demonstrate an ultracompact (∼2 mm by ∼2 mm) Vernier-effect-improved sensor by only using a single microfiber-knot resonator. With the Vernier effect achieved by controlling the optical beating with the spectral ripple of a super light emitting diode (SLED), we show ∼20x sensitivity enhancement for quantitative temperature monitoring. Our sensor creates a new practical method to realize Vernier effect in fiber-optic sensors and beyond.

7.
Nanotechnology ; 30(25): 255201, 2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-30836343

RESUMEN

Optical assembly as a multiple optical trapping technique enables patterned arrangements of matter ranging from atoms to microparticles for diverse applications in biophysics, quantum physics, surface chemistry, and cell biology. Optical potential energy landscapes based on evanescent fields are conventionally employed for optical assembly of subwavelength particles, but are typically limited to predefined patterns and lacking in tunability. Here we present a microfiber photonic crystal cavity applicable for tunable optical assembly of subwavelength particles along a flexible path. This is enabled by excellent mechanical flexibility of the microfiber cavity as well as its broadband photonic crystal reflectors. By virtue of the broadband reflectors, the lattice constant of the assembled particles is precisely tunable via altering the wavelength of input light. Three-dimensional optical assembly is also realized by making use of the high-order transverse mode of the microfiber cavity. Moreover, the optical assembly process is detectable by simply monitoring the reflection/transmission spectrum of the microfiber cavity. The design of the microfiber cavity heralds a new way for tunable optical assembly of subwavelength particles, potentially applicable for development of tunable photonic crystals, metamaterials, and sensors.

8.
Small ; : e1800485, 2018 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-29968281

RESUMEN

Optical activity is an effect of prominent importance in stereochemistry, analytical chemistry, metamaterials, spin photonics, and astrobiology, but is naturally minuscule. Metallic nanostructures are commonly exploited as basic elements for artificially producing large optical activity by virtue of surface plasmon resonance (SPR) on the nanostructures. However, their intrinsic high ohmic loss amplified by the SPR results in low energy efficiency and large photothermal heat generation, severely limiting their performance and practical utility. Giant optical activity by inducing magnetic resonance in an all-dielectric spiral nanoflower (spiral-flower-shaped nanostructure) is demonstrated here. Specifically, a large circular-intensity difference of ≈35% is theoretically predicted and experimentally demonstrated by optimizing the magnetic quadrupole contribution of the nanoflower to scattered light. The nanoflower overcomes the bottleneck of the traditional metallic platforms and enables the development of diverse chiroptical devices and applications.

9.
Opt Lett ; 43(12): 2885-2888, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29905715

RESUMEN

Germanium is a promising material for mid-infrared (MIR) integrated photonics due to its CMOS compatibility and wide transparency window covering the fingerprint spectral region (2-15 µm). However, due to the limited quality and structural configurations of conventional germanium-based integration platforms, the realization of high-Q on-chip germanium resonators in the MIR spectral range remains challenging to date. Here we experimentally demonstrate an air-cladding MIR germanium microring resonator with, to the best of our knowledge, the highest loaded Q-factor of ∼57,000 across all germanium-based integration platforms to date. A propagation loss of 5.4 dB/cm and a high extinction ratio of 22 dB approaching the critical coupling condition are experimentally realized. These are enabled by our smart-cut methods for developing high-quality germanium-on-insulator wafers and by implementing our suspended-membrane structure. Our high-Q germanium microring resonator is a promising step towards a number of on-chip applications in the MIR spectral range.

10.
Opt Lett ; 42(15): 2882-2885, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28957198

RESUMEN

The mid-infrared (MIR) spectral range holds significant potential for spectroscopic and sensing applications because it encompasses the fingerprint region that unveils the vibrational and rotational signatures of molecules. CMOS-compatible on-chip devices that can achieve strong light-matter interaction in the entire fingerprint region are considered a promising way for such applications, but remain unprecedented. Here we present an on-chip MIR germanium photonic crystal cavity that covers the entire fingerprint region. This is made possible by harnessing a homemade air-cladding germanium platform. Our MIR device creates a new avenue toward integrated nonlinear optics and on-chip biochemical sensing in the fingerprint region.

11.
Opt Lett ; 42(11): 2094-2097, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28569853

RESUMEN

We present a focusing subwavelength grating (SWG) for efficient coupling of mid-infrared (mid-IR) light into suspended membrane Ge photonic integrated circuits (PICs) that enable mid-IR applications in the entire fingerprint region. By virtue of their wide spectral transparency window and air-cladding device configuration, the suspended membrane Ge PICs are expected to be effective for mid-IR applications over the spectral region covering from 2 to 15 µm. Specifically, we demonstrate the maximum coupling efficiency of -11 dB with a 1-dB bandwidth of ∼58 nm at the SWG's center wavelength of 2.37 µm. Our focusing SWG is expected to advance the development of on-chip long-wavelength mid-IR applications such as biochemical sensing, thermal imaging, and nonlinear optics in the fingerprint region.

12.
Nanotechnology ; 28(24): 245201, 2017 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-28471747

RESUMEN

Graphene surface plasmons (GSPs) have shown great potential in biochemical sensing, thermal imaging, and optoelectronics. To excite GSPs, several methods based on the near-field optical microscope and graphene nanostructures have been developed in the past few years. However, these methods suffer from their bulky setups and low GSP-excitation efficiency due to the short interaction length between free-space vertical excitation light and the atomic layer of graphene. Here we present a CMOS-compatible design of graphene-on-silicon hybrid plasmonic-photonic integrated circuits that achieve the in-plane excitation of GSP polaritons as well as localized surface plasmon (SP) resonance. By employing a suspended membrane slot waveguide, our design is able to excite GSP polaritons on a chip. Moreover, by utilizing a graphene nanoribbon array, we engineer the transmission spectrum of the waveguide by excitation of localized SP resonance. Our theoretical and computational study paves a new avenue to enable, modulate, and monitor GSPs on a chip, potentially applicable for the development of on-chip electro-optic devices.

13.
Opt Express ; 23(15): 18975-87, 2015 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-26367560

RESUMEN

We theoretically study the absorption property of graphene manipulated by a dielectric cylinder through an analytical method. The distinctive absorption properties of incident waves with different polarizations (TM and TE) are analyzed and they are strongly correlated with the structure resonance and material dispersion. Besides, the characteristics of graphene absorption tuned by the cylinder radius and refractive index as well as the chemical potential of graphene are systematically investigated. It is found that enhancement and continuous tunability of graphene absorption can be achieved by utilizing the whispering gallery mode produced in the dielectric cylinder and harnessing the graphene optical conductivity via tuning its chemical potential by exterior electrical grating. The theoretical studies open up a simple while efficient means to manipulate the absorption of graphene in a broad frequency range via the geometric and physical configuration of hybrid graphene-microstructures.

14.
Heliyon ; 10(9): e30040, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38720761

RESUMEN

A 44-year-old male sustained trauma to his foot leading to a 5-cm defect of the first metatarsal bone and infection of the bone by Staphylococcus aureus. Osteotomy is the most suitable method for treating large metatarsal defects complicated with osteomyelitis, however few reports have been published on this challenging approach. In this case, osteotomy and external fixation for distraction were performed. Finally, the osteomyelitis of the patient was well controlled, the bone length was restored, and the patient could carry weight completely, and the treatment effect was satisfactory.

15.
Light Sci Appl ; 12(1): 161, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37369651

RESUMEN

In-silico clearing enables deep optical imaging of biological samples by correcting image blur caused by scattering and aberration. This breakthrough method offers researchers unprecedented insights into three-dimensional biological systems, with enormous potential for advancing biology and medicine to better understand living organisms and human health.

16.
Anal Methods ; 15(8): 1028-1036, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36762487

RESUMEN

The ability to perform sensitive, real-time, in situ, multiplex chemical analysis is indispensable for diverse applications such as human health monitoring, food safety testing, forensic analysis, environmental sensing, and homeland security. Surface-enhanced Raman spectroscopy (SERS) is an effective tool to offer the ability by virtue of its high sensitivity and rapid label-free signal detection as well as the availability of portable Raman spectrometers. Unfortunately, the practical utility of SERS is limited because it generally requires sample collection and preparation, namely, collecting a sample from an object of interest and placing the sample on top of a SERS substrate to perform a SERS measurement. In fact, not all analytes can satisfy this requirement because the sample collection and preparation process may be undesirable, laborious, difficult, dangerous, costly, or time-consuming. Here we introduce "Place & Play SERS" based on an ultrathin, flexible, stretchable, adhesive, biointegratable gold-deposited polyvinyl alcohol (PVA) nanomesh substrate that enables placing the substrate on top of an object of interest and performing a SERS measurement of the object by epi-excitation without the need for touching, destroying, and sampling it. Specifically, we characterized the sensitivity of the gold/PVA nanomesh substrate in the Place & Play SERS measurement scheme and then used the scheme to conduct SERS measurements of both wet and dry objects under nearly real-world conditions. To show the practical utility of Place & Play SERS, we demonstrated two examples of its application: food safety testing and forensic analysis. Our results firmly verified the new measurement scheme of SERS and are expected to extend the potential of SERS by opening up untapped applications of sensitive, real-time, in situ multiplex chemical analysis.

17.
Lab Chip ; 23(3): 410-420, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36511820

RESUMEN

Vascular stenosis caused by atherosclerosis instigates activation and aggregation of platelets, eventually resulting in thrombus formation. Although antiplatelet drugs are commonly used to inhibit platelet activation and aggregation, they unfortunately cannot prevent recurrent thrombotic events in patients with atherosclerosis. This is partially due to the limited understanding of the efficacy of antiplatelet drugs in the complex hemodynamic environment of vascular stenosis. Conventional methods for evaluating the efficacy of antiplatelet drugs under stenosis either fail to simulate the hemodynamic environment of vascular stenosis characterized by high shear stress and recirculatory flow or lack spatial resolution in their analytical techniques to statistically identify and characterize platelet aggregates. Here we propose and experimentally demonstrate a method comprising an in vitro 3D stenosis microfluidic chip and an optical time-stretch quantitative phase imaging system for studying the efficacy of antiplatelet drugs under stenosis. Our method simulates the atherogenic flow environment of vascular stenosis while enabling high-resolution and statistical analysis of platelet aggregates. Using our method, we distinguished the efficacy of three antiplatelet drugs, acetylsalicylic acid (ASA), cangrelor, and eptifibatide, for inhibiting platelet aggregation induced by stenosis. Specifically, ASA failed to inhibit stenosis-induced platelet aggregation, while eptifibatide and cangrelor showed high and moderate efficacy, respectively. Furthermore, we demonstrated that the drugs tested also differed in their efficacy for inhibiting platelet aggregation synergistically induced by stenosis and agonists (e.g., adenosine diphosphate, and collagen). Taken together, our method is an effective tool for investigating the efficacy of antiplatelet drugs under vascular stenosis, which could assist the development of optimal pharmacologic strategies for patients with atherosclerosis.


Asunto(s)
Aterosclerosis , Trombosis , Humanos , Inhibidores de Agregación Plaquetaria/farmacología , Eptifibatida/farmacología , Constricción Patológica , Plaquetas , Aspirina/farmacología , Aterosclerosis/diagnóstico por imagen , Aterosclerosis/tratamiento farmacológico , Dispositivos Laboratorio en un Chip
18.
J Phys Chem Lett ; 14(45): 10208-10218, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37930960

RESUMEN

Surface-enhanced Raman spectroscopy (SERS) is a potent analytical tool, particularly for molecular identification and structural analysis. Conventional metallic SERS substrates, however, suffer from low reproducibility and compatibility with biological molecules. Recently, metal-free SERS substrates based on chemical enhancement have emerged as a promising alternative with carbon-based materials offering excellent reproducibility and compatibility. Nevertheless, our understanding of carbon materials in SERS remains limited, which hinders their rational design. Here we systematically explore multidimensional carbon materials, including zero-dimensional fullerenes (C60), one-dimensional carbon nanotubes, two-dimensional graphene, and their B-, N-, and O-doped derivatives, for SERS applications. Using density functional theory, we elucidate the nonresonant polarizability-enhanced and resonant charge-transfer-based chemical enhancement mechanisms of these materials by evaluating their static/dynamic polarizability and electron excitation properties. This work provides a critical reference for the future design of carbon-based SERS substrates, opening a new avenue in this field.

19.
Lab Chip ; 23(6): 1703-1712, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36799214

RESUMEN

Acute leukemia (AL) is one of the top life-threatening diseases. Accurate typing of AL can significantly improve its prognosis. However, conventional methods for AL typing often require cell staining, which is time-consuming and labor-intensive. Furthermore, their performance is highly limited by the specificity and availability of fluorescent labels, which can hardly meet the requirements of AL typing in clinical settings. Here, we demonstrate AL typing by intelligent optical time-stretch (OTS) imaging flow cytometry on a microfluidic chip. Specifically, we employ OTS microscopy to capture the images of cells in clinical bone marrow samples with a spatial resolution of 780 nm at a high flowing speed of 1 m s-1 in a label-free manner. Then, to show the clinical utility of our method for which the features of clinical samples are diverse, we design and construct a deep convolutional neural network (CNN) to analyze the cellular images and determine the AL type of each sample. We measure 30 clinical samples composed of 7 acute lymphoblastic leukemia (ALL) samples, 17 acute myelogenous leukemia (AML) samples, and 6 samples from healthy donors, resulting in a total of 227 620 images acquired. Results show that our method can distinguish ALL and AML with an accuracy of 95.03%, which, to the best of our knowledge, is a record in label-free AL typing. In addition to AL typing, we believe that the high throughput, high accuracy, and label-free operation of our method make it a potential solution for cell analysis in scientific research and clinical settings.


Asunto(s)
Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Citometría de Flujo/métodos , Microfluídica , Dispositivos Laboratorio en un Chip
20.
Nat Commun ; 13(1): 4142, 2022 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-35842441

RESUMEN

Human embryonic stem cell-derived ß cells (SC-ß cells) hold great promise for treatment of diabetes, yet how to achieve functional maturation and protect them against metabolic stresses such as glucotoxicity and lipotoxicity remains elusive. Our single-cell RNA-seq analysis reveals that ZnT8 loss of function (LOF) accelerates the functional maturation of SC-ß cells. As a result, ZnT8 LOF improves glucose-stimulated insulin secretion (GSIS) by releasing the negative feedback of zinc inhibition on insulin secretion. Furthermore, we demonstrate that ZnT8 LOF mutations endow SC-ß cells with resistance to lipotoxicity/glucotoxicity-triggered cell death by alleviating endoplasmic reticulum (ER) stress through modulation of zinc levels. Importantly, transplantation of SC-ß cells with ZnT8 LOF into mice with preexisting diabetes significantly improves glycemia restoration and glucose tolerance. These findings highlight the beneficial effect of ZnT8 LOF on the functional maturation and survival of SC-ß cells that are useful as a potential source for cell replacement therapies.


Asunto(s)
Proteínas de Transporte de Catión , Diabetes Mellitus , Células Madre Embrionarias Humanas , Células Secretoras de Insulina , Animales , Proteínas de Transporte de Catión/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Glucosa/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Ratones , Estrés Fisiológico , Zinc/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA