Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Gene Med ; 26(1): e3626, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37974510

RESUMEN

Coronary heart disease is one of the most significant risk factors affecting human health worldwide. Its pathogenesis is intricate, with atherosclerosis being widely regarded as the leading cause. Aberrant lipid metabolism in macrophages is recognized as one of the triggering factors in atherosclerosis development. To investigate the role of macrophages in the formation of coronary artery atherosclerosis, we utilized single-cell data from wild-type mice obtained from the aortic roots and ascending aortas after long-term high-fat diet feeding, as deposited in GSE131776. Seurat software was employed to refine the single-cell data in terms of scale and cell types, facilitating the identification of differentially expressed genes. Through the application of differential expression genes, we conducted Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional enrichment analyses at 0, 8 and 16 weeks, aiming to uncover pathways with the most pronounced functional alterations as the high-fat diet progressed. The AddModuleScore function was employed to score the expression of these pathways across different cell types. Subsequently, macrophages were isolated and further subdivided into subtypes, followed by an investigation into intercellular communication within these subtypes. Subsequent to this, we induced THP-1 cells to generate foam cells, validating critical genes identified in prior studies. The results revealed that macrophages underwent the most substantial functional changes as the high-fat diet progressed. Furthermore, two clusters were identified as potentially playing pivotal roles in macrophage functional regulation during high-fat diet progression. Additionally, macrophage subtypes displayed intricate functionalities, with mutual functional counterbalances observed among these subtypes. The proportions of macrophage subtypes and the modulation of anti-inflammatory and pro-inflammatory functions played significant roles in the development of coronary artery atherosclerosis.


Asunto(s)
Aterosclerosis , Enfermedad de la Arteria Coronaria , Humanos , Ratones , Animales , Enfermedad de la Arteria Coronaria/genética , Macrófagos/metabolismo , Macrófagos/patología , Aterosclerosis/genética , Células Espumosas/metabolismo , Células Espumosas/patología
2.
Brief Bioinform ; 23(1)2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-34676389

RESUMEN

The employment of doubled-haploid (DH) technology in maize has vastly accelerated the efficiency of developing inbred lines. The selection of superior lines has to rely on genotypes with genomic selection (GS) model, rather than phenotypes due to the high expense of field phenotyping. In this work, we implemented 'genome optimization via virtual simulation (GOVS)' using the genotype and phenotype data of 1404 maize lines and their F1 progeny. GOVS simulates a virtual genome encompassing the most abundant 'optimal genotypes' or 'advantageous alleles' in a genetic pool. Such a virtually optimized genome, although can never be developed in reality, may help plot the optimal route to direct breeding decisions. GOVS assists in the selection of superior lines based on the genomic fragments that a line contributes to the simulated genome. The assumption is that the more fragments of optimal genotypes a line contributes to the assembly, the higher the likelihood of the line favored in the F1 phenotype, e.g. grain yield. Compared to traditional GS method, GOVS-assisted selection may avoid using an arbitrary threshold for the predicted F1 yield to assist selection. Additionally, the selected lines contributed complementary sets of advantageous alleles to the virtual genome. This feature facilitates plotting the optimal route for DH production, whereby the fewest lines and F1 combinations are needed to pyramid a maximum number of advantageous alleles in the new DH lines. In summary, incorporation of DH production, GS and genome optimization will ultimately improve genomically designed breeding in maize. Short abstract: Doubled-haploid (DH) technology has been widely applied in maize breeding industry, as it greatly shortens the period of developing homozygous inbred lines via bypassing several rounds of self-crossing. The current challenge is how to efficiently screen the large volume of inbred lines based on genotypes. We present the toolbox of genome optimization via virtual simulation (GOVS), which complements the traditional genomic selection model. GOVS simulates a virtual genome encompassing the most abundant 'optimal genotypes' in a breeding population, and then assists in selection of superior lines based on the genomic fragments that a line contributes to the simulated genome. Availability of GOVS (https://govs-pack.github.io/) to the public may ultimately facilitate genomically designed breeding in maize.


Asunto(s)
Fitomejoramiento , Zea mays , Genotipo , Haploidia , Fenotipo , Fitomejoramiento/métodos , Zea mays/genética
3.
Cytokine ; 177: 156547, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38373366

RESUMEN

BACKGROUND: Epidemiological and experimental evidences have implicated chronic inflammation in the association with allergic rhinitis (AR). However, it remains unclear whether specific circulating cytokines are the cause of AR or the consequence of bias. To examine whether genetic-predicted changes in circulating cytokine concentrations are related to the occurrence of AR, we conducted a two-sample Mendelian randomization (MR) analysis. METHODS: We investigated the causal effects of 26 circulating inflammatory cytokines on AR through MR analysis. The primary method employed in this study was the inverse variance-weighted (IVW) method. Sensitivity analyses were conducted using simple median, weighted median, penalized weighted median, and MR-Egger regression. RESULTS: Our study revealed suggestive evidence that higher levels of circulating IL-18 (OR per one standard deviation [SD] increase: 1.006; 95 % CI, 1.002 to 1.011; P = 0.006, PFDR = 0.067, random-effects IVW method) and Macrophage inflammatory protein-1α (MIP-1α) (OR per one SD increase: 1.015; 95 % CI, 1.004 to 1.026; P = 0.009, PFDR = 0.048, random-effects IVW method) were associated with an increased risk of AR. Conversely, higher levels of circulating TRAIL were associated with a decreased risk of AR (OR per one SD increase: 0.993; 95 % CI, 0.989 to 0.997; P = 4.58E-4, PFDR = 0.004, random-effects IVW method). Only the results of TRAIL exist after Bonferroni-correction (the p-value < 0.0019). Sensitivity analysis yielded directionally consistent results. No significant associations were observed between other circulating inflammatory cytokines and AR. CONCLUSION: Genetically predicted levels of IL-18, and MIP-1α are likely to associated with an increased risk of AR occurrence. Genetically predicted levels of TRAIL are statistically significant in reducing the risk of AR occurrence. However, the current research evidence does not support an impact of other inflammatory cytokines on the risk of AR. Future studies are needed to provide additional evidence to support the current conclusions.


Asunto(s)
Citocinas , Rinitis Alérgica , Humanos , Quimiocina CCL3 , Interleucina-18/genética , Análisis de la Aleatorización Mendeliana , Rinitis Alérgica/genética , Estudio de Asociación del Genoma Completo
4.
Mol Breed ; 44(2): 14, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38343399

RESUMEN

With the improvement of high-throughput technologies in recent years, large multi-dimensional plant omics data have been produced, and big-data-driven yield prediction research has received increasing attention. Machine learning offers promising computational and analytical solutions to interpret the biological meaning of large amounts of data in crops. In this study, we utilized multi-omics datasets from 156 maize recombinant inbred lines, containing 2496 single nucleotide polymorphisms (SNPs), 46 image traits (i-traits) from 16 developmental stages obtained through an automatic phenotyping platform, and 133 primary metabolites. Based on benchmark tests with different types of prediction models, some machine learning methods, such as Partial Least Squares (PLS), Random Forest (RF), and Gaussian process with Radial basis function kernel (GaussprRadial), achieved better prediction for maize yield, albeit slight difference for method preferences among i-traits, genomic, and metabolic data. We found that better yield prediction may be caused by various capabilities in ranking and filtering data features, which is found to be linked with biological meaning such as photosynthesis-related or kernel development-related regulations. Finally, by integrating multiple omics data with the RF machine learning approach, we can further improve the prediction accuracy of grain yield from 0.32 to 0.43. Our research provides new ideas for the application of plant omics data and artificial intelligence approaches to facilitate crop genetic improvements. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01454-z.

5.
Plant J ; 109(2): 402-414, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34882870

RESUMEN

Global agriculture is dominated by a handful of species that currently supply a huge proportion of our food and feed. It additionally faces the massive challenge of providing food for 10 billion people by 2050, despite increasing environmental deterioration. One way to better plan production in the face of current and continuing climate change is to better understand how our domestication of these crops included their adaptation to environments that were highly distinct from those of their centre of origin. There are many prominent examples of this, including the development of temperate Zea mays (maize) and the alteration of day-length requirements in Solanum tuberosum (potato). Despite the pre-eminence of some 15 crops, more than 50 000 species are edible, with 7000 of these considered semi-cultivated. Opportunities afforded by next-generation sequencing technologies alongside other methods, including metabolomics and high-throughput phenotyping, are starting to contribute to a better characterization of a handful of these species. Moreover, the first examples of de novo domestication have appeared, whereby key target genes are modified in a wild species in order to confer predictable traits of agronomic value. Here, we review the scale of the challenge, drawing extensively on the characterization of past agriculture to suggest informed strategies upon which the breeding of future climate-resilient crops can be based.


Asunto(s)
Adaptación Fisiológica , Cambio Climático , Productos Agrícolas/genética , Abastecimiento de Alimentos , Agricultura , Productos Agrícolas/fisiología , Domesticación , Edición Génica , Fitomejoramiento , Incertidumbre
6.
Plant Biotechnol J ; 21(3): 506-520, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36383026

RESUMEN

Southern corn leaf blight (SLB), caused by the necrotrophic pathogen Cochliobolus heterostrophus, is one of the maize foliar diseases and poses a great threat to corn production around the world. Identification of genetic variations underlying resistance to SLB is of paramount importance to maize yield and quality. Here, we used a random-open-parent association mapping population containing eight recombinant inbred line populations and one association mapping panel consisting of 513 diversity maize inbred lines with high-density genetic markers to dissect the genetic basis of SLB resistance. Overall, 109 quantitative trait loci (QTLs) with predominantly small or moderate additive effects, and little epistatic effects were identified. We found 35 (32.1%) novel loci in comparison with the reported QTLs. We revealed that resistant alleles were significantly enriched in tropical accessions and the frequency of about half of resistant alleles decreased during the adaptation process owing to the selection of agronomic traits. A large number of annotated genes located in the SLB-resistant QTLs were shown to be involved in plant defence pathways. Integrating genome-wide association study, transcriptomic profiling, resequencing and gene editing, we identified ZmFUT1 and MYBR92 as the putative genes responsible for the major QTLs for resistance to C. heterostrophus. Our results present a comprehensive insight into the genetic basis of SLB resistance and provide resistant loci or genes as direct targets for crop genetic improvement.


Asunto(s)
Estudio de Asociación del Genoma Completo , Zea mays , Mapeo Cromosómico/métodos , Zea mays/genética , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo
7.
Yi Chuan ; 45(9): 741-753, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37731229

RESUMEN

The impending global climate change presents significant challenges to agricultural production. It is imperative to find approaches to ensure sustained growth in food production while reducing agricultural input, in order to meet the needs of worldwide people for nutritious food supply. One of the effective strategies to address this challenge is still the development of new crop varieties with high yield, stable yield, environmental friendliness and rich nutrition. The creation of new crop cultivars depends largely on the expansion of genetic resources and the innovation of breeding techniques. De novo domestication is an innovative breeding strategy for developing new crop varieties. It involves utilizing undomesticated or semi-domesticated plants with desirable traits as founder species for breeding. The process involves rapid domestication of wild plants through the redesign of agronomic traits and the introduction of domestication genes to meet diverse human needs. In this review, we overview the history of crop domestication and genetic improvement, clarify the necessity of enriching crop diversity, and emphasize the significance of wild plants' genetic diversity in expanding the scope for crop redesign. Breeding strategy innovation is the key to accelerate crop breeding. We also discuss the feasibility and prospects of rapid developing new crops through de novo domestication.


Asunto(s)
Domesticación , Fitomejoramiento , Humanos , Agricultura , Productos Agrícolas/genética , Fenotipo
8.
Mol Biol Evol ; 38(4): 1262-1275, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33212480

RESUMEN

Plant phenotypic plasticity describes altered phenotypic performance of an individual when grown in different environments. Exploring genetic architecture underlying plant plasticity variation may help mitigate the detrimental effects of a rapidly changing climate on agriculture, but little research has been done in this area to date. In the present study, we established a population of 976 maize F1 hybrids by crossing 488 diverse inbred lines with two elite testers. Genome-wide association study identified hundreds of quantitative trait loci associated with phenotypic plasticity variation across diverse F1 hybrids, the majority of which contributed very little variance, in accordance with the polygenic nature of these traits. We identified several quantitative trait locus regions that may have been selected during the tropical-temperate adaptation process. We also observed heterosis in terms of phenotypic plasticity, in addition to the traditional genetic value differences measured between hybrid and inbred lines, and the pattern of which was affected by genetic background. Our results demonstrate a landscape of phenotypic plasticity in maize, which will aid in the understanding of its genetic architecture, its contribution to adaptation and heterosis, and how it may be exploited for future maize breeding in a rapidly changing environment.


Asunto(s)
Adaptación Biológica , Interacción Gen-Ambiente , Vigor Híbrido , Zea mays/genética , Sitios de Carácter Cuantitativo , Selección Genética
9.
Langmuir ; 38(32): 9853-9862, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-35938418

RESUMEN

Superhydrophobic surfaces are extremely susceptible to damage, which can lead to a sharp decrease in their service life and physical properties. Therefore, developing methods to impart superhydrophobic surfaces with excellent wear resistance is crucial. In this article, a flexible carbon fiber brush was utilized as an electrode to fabricate micro-/nano-structures on a grooved surface via electric discharge machining in one step, resulting in a superhydrophobic coating with excellent wear resistance. Carbon fiber brushes exhibit several notable properties, including excellent flexibility, conductivity, and high temperature resistance. Carbon fiber brushes can adapt to the complex inner walls of grooves. Many nano-structures were fabricated on the grooves via pulse discharge, which resulted in a superhydrophobic surface with excellent wear resistance. The contact angle (CA) and sliding angle of the surface after discharge were 156.3 and 2°, respectively. The processed surface exhibits superior corrosion resistance compared to the stainless-steel substrate. The influence of the micro-groove shapes on wear resistance was tested. The results showed that, after 500 cm of wear, the shallow grooves retained their superhydrophobicity with a CA of 150.1°.

10.
Appl Opt ; 61(8): 1841-1850, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35297872

RESUMEN

A laser-induced cavitation bubble shock forming technology is proposed for microgroove formation in thin copper. It is stamped by using the impact pressure generated by the laser breakdown of liquid. The impact-induced micro-formation of thin copper is studied by numerical simulation and experimentation. A finite-element model is developed, and the impact pressure created by laser-induced cavitation is measured to study the spatial distribution of impact pressure. The laser-induced cavitation process of the high-speed impact on thin copper is numerically simulated. The results of simulations are consistent with those of experiments, confirming the model's accuracy. The simulation is then used to study the dynamic formation and deformation behavior of the laser-induced cavitation impact of thin copper. The stress and thickness distributions during the formation of microgrooves in thin copper are also investigated. Furthermore, the influence of laser fluence and copper thickness on formation is studied. The results reveal that the high-speed impact forming of thin copper by laser-induced cavitation is due to three impact forces: a plasma shock wave, a cavitation shock wave, and a microjet, and this technology can be used to form thin metal walls.

11.
Plant J ; 103(5): 1710-1722, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32445406

RESUMEN

Metabolites are the intermediate and final products of metabolism, which play essential roles in plant growth, evolution and adaptation to changing climates. However, it is unclear how evolution contributes to metabolic variation in plants. Here, we investigated the metabolomics data from leaf and seed tissues in maize and rice. Using principal components analysis based on leaf metabolites but not seed metabolites, metabolomics data could be clearly separated for rice Indica and Japonica accessions, while two maize subgroups, temperate and tropical, showed more visible admixture. Rice and maize seed exhibited significant interspecific differences in metabolic variation, while within rice, leaf and seed displayed similar metabolic variations. Among 10 metabolic categories, flavonoids had higher variation in maize than rice, indicating flavonoids are a key constituent of interspecific metabolic divergence. Interestingly, metabolic regulation was also found to be reshaped dramatically from positive to negative correlations, indicative of the differential evolutionary processes in maize and rice. Moreover, perhaps due to this divergence significantly more metabolic interactions were identified in rice than maize. Furthermore, in rice, the leaf was found to harbor much more intense metabolic interactions than the seed. Our result suggests that metabolomes are valuable for tracking evolutionary history, thereby complementing and extending genomic insights concerning which features are responsible for interspecific differentiation in maize and rice.


Asunto(s)
Metabolómica , Oryza/metabolismo , Zea mays/metabolismo , Evolución Molecular , Variación Genética , Genética de Población , Metabolómica/métodos , Oryza/genética , Hojas de la Planta/metabolismo , Análisis de Componente Principal , Semillas/metabolismo , Zea mays/genética
12.
Plant Biotechnol J ; 19(6): 1195-1205, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33386670

RESUMEN

Low grain moisture at harvest is crucial for safe production, transport and storage, but the genetic architecture of this trait in maize (Zea mays) remains elusive. Here, we measured the dynamic changes in grain moisture content in an association-mapping panel of 513 diverse maize inbred lines at five successive stages across five geographical environments. Genome-wide association study (GWAS) revealed 71 quantitative trait loci (QTLs) that influence grain moisture in maize. Epistatic effects play vital roles in the variability in moisture levels, even outperforming main-effect QTLs during the early dry-down stages. Distinct QTL-environment interactions influence the spatio-temporal variability of maize grain moisture, which is primarily triggered at specific times. By combining genetic population analysis, transcriptomic profiling and gene editing, we identified GRMZM5G805627 and GRMZM2G137211 as candidate genes underlying major QTLs for grain moisture in maize. Our results provide insights into the genetic architecture of dynamic changes in grain moisture, which should facilitate maize breeding.


Asunto(s)
Estudio de Asociación del Genoma Completo , Zea mays , Mapeo Cromosómico , Grano Comestible/genética , Fenotipo , Fitomejoramiento , Semillas/genética , Zea mays/genética
13.
Plant Biotechnol J ; 18(3): 779-790, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31469515

RESUMEN

The transcriptome connects genome to the gene function and ultimate phenome in biology. So far, transcriptomic approach was not used in peanut for performing trait mapping in bi-parental populations. In this research, we sequenced the whole transcriptome in immature seeds in a peanut recombinant inbred line (RIL) population and explored thoroughly the landscape of transcriptomic variations and its genetic basis. The comprehensive analysis identified total 49 691 genes in RIL population, of which 92 genes followed a paramutation-like expression pattern. Expression quantitative trait locus (eQTL) analysis identified 1207 local eQTLs and 15 837 distant eQTLs contributing to the whole-genome transcriptomic variation in peanut. There were 94 eQTL hot spot regions detected across the genome with the dominance of distant eQTL. By integrating transcriptomic profile and annotation analyses, we unveiled a putative candidate gene and developed a linked marker InDel02 underlying a major QTL responsible for purple testa colour in peanut. Our result provided a first understanding of genetic basis of whole-genome transcriptomic variation in peanut and illustrates the potential of the transcriptome-aid approach in dissecting important traits in non-model plants.


Asunto(s)
Arachis/genética , Sitios de Carácter Cuantitativo , Transcriptoma , Marcadores Genéticos , Mutación INDEL , Fenotipo , Fitomejoramiento
14.
Plant J ; 93(6): 1116-1128, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29381266

RESUMEN

Primary metabolism plays a pivotal role in normal plant growth, development and reproduction. As maize is a major crop worldwide, the primary metabolites produced by maize plants are of immense importance from both calorific and nutritional perspectives. Here a genome-wide association study (GWAS) of 61 primary metabolites using a maize association panel containing 513 inbred lines identified 153 significant loci associated with the level of these metabolites in four independent tissues. The genome-wide expression level of 760 genes was also linked with metabolite levels within the same tissue. On average, the genetic variants at each locus or transcriptional variance of each gene identified here were estimated to have a minor effect (4.4-7.8%) on primary metabolic variation. Thirty-six loci or genes were prioritized as being worthy of future investigation, either with regard to functional characterization or for their utility for genetic improvement. This target list includes the well-known opaque 2 (O2) and lkr/sdh genes as well as many less well-characterized genes. During our investigation of these 36 loci, we analyzed the genetic components and variations underlying the trehalose, aspartate and aromatic amino acid pathways, thereby functionally characterizing four genes involved in primary metabolism in maize.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Estudio de Asociación del Genoma Completo/métodos , Redes y Vías Metabólicas/genética , Zea mays/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Genes de Plantas/genética , Metabolómica , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo/genética , Especificidad de la Especie , Zea mays/clasificación , Zea mays/metabolismo
15.
BMC Plant Biol ; 18(1): 66, 2018 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-29673320

RESUMEN

BACKGROUND: Residual heterozygosity (RH) in advanced inbred lines of plants benefits quantitative trait locus (QTL) mapping studies. However, knowledge of factors affecting the genome-wide distribution of RH remains limited. RESULTS: A set of 2196 heterogeneous inbred family (HIF) maize lines derived from 12 recombinant inbred line (RIL) populations was genotyped using the Maize50K SNP chip. A total of 18,615 unique RH intervals were identified, ranging from 505 to 2095 intervals per population, with average maize genome coverage of 94.8%. Across all populations, there were 8.6 RH intervals per HIF line on average, ranging from 1.8 to 14 intervals; the average size of an RH interval was approximately 58.7 Mb, ranging from 7.2 to 74.1 Mb. A given RH region was present in an average of 5 different individuals within a population. Seven RH hotspots, where RH segments were enriched in the genome, were found to be subject to selection during population development. The RH patterns varied significantly across populations, presumably reflecting differences in the genetic background of each population, and 8 QTLs were found to affect heterozygosity levels in the RH hotspots. The potential use of this HIF library for the fine mapping of QTLs was assessed based on publicly available QTL information, achieving a ≤ 1 Mb resolution on average. CONCLUSION: The examined library of HIF lines offers insight into the RH landscape and its intraspecific variation and provides a useful resource for the QTL cloning of important agronomic traits in maize.


Asunto(s)
Sitios de Carácter Cuantitativo/genética , Zea mays/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Heterocigoto
16.
Plant Biotechnol J ; 16(7): 1336-1348, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29265559

RESUMEN

Genome-wide association studies (GWASs) combining high-throughput genome resequencing and phenotyping can accelerate the dissection of genetic architecture and identification of genes for plant complex traits. In this study, we developed a rapeseed genomic variation map consisting of 4 542 011 SNPs and 628 666 INDELs. GWAS was performed for three seed-quality traits, including erucic acid content (EAC), glucosinolate content (GSC) and seed oil content (SOC) using 3.82 million polymorphisms in an association panel. Six, 49 and 17 loci were detected to be associated with EAC, GSC and SOC in multiple environments, respectively. The mean total contribution of these loci in each environment was 94.1% for EAC and 87.9% for GSC, notably higher than that for SOC (40.1%). A high correlation was observed between phenotypic variance and number of favourable alleles for associated loci, which will contribute to breeding improvement by pyramiding these loci. Furthermore, candidate genes were detected underlying associated loci, based on functional polymorphisms in gene regions where sequence variation was found to correlate with phenotypic variation. Our approach was validated by detection of well-characterized FAE1 genes at each of two major loci for EAC on chromosomes A8 and C3, along with MYB28 genes at each of three major loci for GSC on chromosomes A9, C2 and C9. Four novel candidate genes were detected by correlation between GSC and SOC and observed sequence variation, respectively. This study provides insights into the genetic architecture of three seed-quality traits, which would be useful for genetic improvement of B. napus.


Asunto(s)
Brassica napus/genética , Fitomejoramiento , Carácter Cuantitativo Heredable , Semillas/genética , Brassica napus/anatomía & histología , Mapeo Cromosómico , Ácidos Erucicos/metabolismo , Sitios Genéticos/genética , Variación Genética/genética , Estudio de Asociación del Genoma Completo , Glucosinolatos/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Fitomejoramiento/métodos , Polimorfismo de Nucleótido Simple/genética , Aceite de Brassica napus/metabolismo , Semillas/anatomía & histología , Tetraploidía
17.
Plant Biotechnol J ; 16(8): 1464-1475, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29356296

RESUMEN

Although tocopherols play an important role in plants and animals, the genetic architecture of tocopherol content in maize kernels has remained largely unknown. In this study, linkage and association analyses were conducted to examine the genetic architecture of tocopherol content in maize kernels. Forty-one unique quantitative trait loci (QTLs) were identified by linkage mapping in six populations of recombinant inbred lines (RILs). In addition, 32 significant loci were detected via genome-wide association study (GWAS), 18 of which colocalized with the QTLs identified by linkage mapping. Fine mapping of a major QTL validated the accuracy of GWAS and QTL mapping results and suggested a role for nontocopherol pathway genes in the modulation of natural tocopherol variation. We provided genome-wide evidence that genes involved in fatty acid metabolism, chlorophyll metabolism and chloroplast function may affect natural variation in tocopherols. These findings were confirmed through mutant analysis of a particular gene from the fatty acid pathway. In addition, the favourable alleles for many of the significant SNPs/QTLs represented rare alleles in natural populations. Together, our results revealed many novel genes that are potentially involved in the variation of tocopherol content in maize kernels. Pyramiding of the favourable alleles of the newly elucidated genes and the well-known tocopherol pathway genes would greatly improve tocopherol content in maize.


Asunto(s)
Estudio de Asociación del Genoma Completo/métodos , Tocoferoles/metabolismo , Zea mays/metabolismo , Cromosomas de las Plantas/genética , Ligamiento Genético/genética , Sitios de Carácter Cuantitativo/genética
18.
Plant Physiol ; 173(3): 1554-1564, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28153923

RESUMEN

With increasing demand for novel traits in crop breeding, the plant research community faces the challenge of quantitatively analyzing the structure and function of large numbers of plants. A clear goal of high-throughput phenotyping is to bridge the gap between genomics and phenomics. In this study, we quantified 106 traits from a maize (Zea mays) recombinant inbred line population (n = 167) across 16 developmental stages using the automatic phenotyping platform. Quantitative trait locus (QTL) mapping with a high-density genetic linkage map, including 2,496 recombinant bins, was used to uncover the genetic basis of these complex agronomic traits, and 988 QTLs have been identified for all investigated traits, including three QTL hotspots. Biomass accumulation and final yield were predicted using a combination of dissected traits in the early growth stage. These results reveal the dynamic genetic architecture of maize plant growth and enhance ideotype-based maize breeding and prediction.


Asunto(s)
Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Genes de Plantas/genética , Sitios de Carácter Cuantitativo/genética , Zea mays/genética , Biomasa , Redes Reguladoras de Genes , Genómica/métodos , Genotipo , Modelos Genéticos , Fenotipo , Fitomejoramiento/métodos , Zea mays/crecimiento & desarrollo
19.
Plant Physiol ; 175(2): 774-785, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28811335

RESUMEN

Maize (Zea mays) is a major staple crop. Maize kernel size and weight are important contributors to its yield. Here, we measured kernel length, kernel width, kernel thickness, hundred kernel weight, and kernel test weight in 10 recombinant inbred line populations and dissected their genetic architecture using three statistical models. In total, 729 quantitative trait loci (QTLs) were identified, many of which were identified in all three models, including 22 major QTLs that each can explain more than 10% of phenotypic variation. To provide candidate genes for these QTLs, we identified 30 maize genes that are orthologs of 18 rice (Oryza sativa) genes reported to affect rice seed size or weight. Interestingly, 24 of these 30 genes are located in the identified QTLs or within 1 Mb of the significant single-nucleotide polymorphisms. We further confirmed the effects of five genes on maize kernel size/weight in an independent association mapping panel with 540 lines by candidate gene association analysis. Lastly, the function of ZmINCW1, a homolog of rice GRAIN INCOMPLETE FILLING1 that affects seed size and weight, was characterized in detail. ZmINCW1 is close to QTL peaks for kernel size/weight (less than 1 Mb) and contains significant single-nucleotide polymorphisms affecting kernel size/weight in the association panel. Overexpression of this gene can rescue the reduced weight of the Arabidopsis (Arabidopsis thaliana) homozygous mutant line in the AtcwINV2 gene (Arabidopsis ortholog of ZmINCW1). These results indicate that the molecular mechanisms affecting seed development are conserved in maize, rice, and possibly Arabidopsis.


Asunto(s)
Oryza/genética , Sitios de Carácter Cuantitativo/genética , Zea mays/genética , Oryza/crecimiento & desarrollo , Fenotipo , Semillas/genética , Semillas/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo
20.
Plant Cell ; 27(7): 1839-56, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26187921

RESUMEN

Deciphering the influence of genetics on primary metabolism in plants will provide insights useful for genetic improvement and enhance our fundamental understanding of plant growth and development. Although maize (Zea mays) is a major crop for food and feed worldwide, the genetic architecture of its primary metabolism is largely unknown. Here, we use high-density linkage mapping to dissect large-scale metabolic traits measured in three different tissues (leaf at seedling stage, leaf at reproductive stage, and kernel at 15 d after pollination [DAP]) of a maize recombinant inbred line population. We identify 297 quantitative trait loci (QTLs) with moderate (86.2% of the mapped QTL, R(2) = 2.4 to 15%) to major effects (13.8% of the mapped QTL, R(2) >15%) for 79 primary metabolites across three tissues. Pairwise epistatic interactions between these identified loci are detected for more than 25.9% metabolites explaining 6.6% of the phenotypic variance on average (ranging between 1.7 and 16.6%), which implies that epistasis may play an important role for some metabolites. Key candidate genes are highlighted and mapped to carbohydrate metabolism, the tricarboxylic acid cycle, and several important amino acid biosynthetic and catabolic pathways, with two of them being further validated using candidate gene association and expression profiling analysis. Our results reveal a metabolite-metabolite-agronomic trait network that, together with the genetic determinants of maize primary metabolism identified herein, promotes efficient utilization of metabolites in maize improvement.


Asunto(s)
Endogamia , Redes y Vías Metabólicas/genética , Recombinación Genética/genética , Zea mays/genética , Zea mays/metabolismo , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Epistasis Genética , Genes de Plantas , Estudios de Asociación Genética , Variación Genética , Metaboloma/genética , Hojas de la Planta/genética , Sitios de Carácter Cuantitativo/genética , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA