Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microb Cell Fact ; 21(1): 102, 2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35643577

RESUMEN

BACKGROUND: The microbial production of succinic acid (SA) from renewable carbon sources via the reverse TCA (rTCA) pathway is a process potentially accompanied by net-fixation of carbon dioxide (CO2). Among reduced carbon sources, glycerol is particularly attractive since it allows a nearly twofold higher CO2-fixation yield compared to sugars. Recently, we described an engineered Saccharomyces cerevisiae strain which allowed SA production in synthetic glycerol medium with a maximum yield of 0.23 Cmol Cmol-1. The results of that previous study suggested that the glyoxylate cycle considerably contributed to SA accumulation in the respective strain. The current study aimed at improving the flux into the rTCA pathway accompanied by a higher CO2-fixation and SA yield. RESULTS: By changing the design of the expression cassettes for the rTCA pathway, overexpressing PYC2, and adding CaCO3 to the batch fermentations, an SA yield on glycerol of 0.63 Cmol Cmol-1 was achieved (i.e. 47.1% of the theoretical maximum). The modifications in this 2nd-generation SA producer improved the maximum biomass-specific glycerol consumption rate by a factor of nearly four compared to the isogenic baseline strain solely equipped with the dihydroxyacetone (DHA) pathway for glycerol catabolism. The data also suggest that the glyoxylate cycle did not contribute to the SA production in the new strain. Cultivation conditions which directly or indirectly increased the concentration of bicarbonate, led to an accumulation of malate in addition to the predominant product SA (ca. 0.1 Cmol Cmol-1 at the time point when SA yield was highest). Off-gas analysis in controlled bioreactors with CO2-enriched gas-phase indicated that CO2 was fixed during the SA production phase. CONCLUSIONS: The data strongly suggest that a major part of dicarboxylic acids in our 2nd-generation SA-producer was formed via the rTCA pathway enabling a net fixation of CO2. The greatly increased capacity of the rTCA pathway obviously allowed successful competition with other pathways for the common precursor pyruvate. The overexpression of PYC2 and the increased availability of bicarbonate, the co-substrate for the PYC reaction, further strengthened this capacity. The achievements are encouraging to invest in future efforts establishing a process for SA production from (crude) glycerol and CO2.


Asunto(s)
Saccharomyces cerevisiae , Ácido Succínico , Bicarbonatos/metabolismo , Dióxido de Carbono/metabolismo , Medios de Cultivo/metabolismo , Glicerol/metabolismo , Glioxilatos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácido Succínico/metabolismo
2.
FEMS Yeast Res ; 20(1)2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31821485

RESUMEN

Anaplerotic reactions replenish TCA cycle intermediates during growth. In Saccharomyces cerevisiae, pyruvate carboxylase and the glyoxylate cycle have been experimentally identified to be the main anaplerotic routes during growth on glucose (C6) and ethanol (C2), respectively. The current study investigates the importance of the two isoenzymes of pyruvate carboxylase (PYC1 and PYC2) and one of the key enzymes of the glyoxylate cycle (ICL1) for growth on glycerol (C3) as a sole carbon source. As the wild-type strains of the CEN.PK family are unable to grow in pure synthetic glycerol medium, a reverse engineered derivative showing a maximum specific growth rate of 0.14 h-1 was used as the reference strain. While the deletion of PYC1 reduced the maximum specific growth rate by about 38%, the deletion of PYC2 had no significant impact, neither in the reference strain nor in the pyc1Δ mutant. The deletion of ICL1 only marginally reduced growth of the reference strain but further decreased the growth rate of the pyc1 deletion strain by 20%. Interestingly, the triple deletion (pyc1Δ pyc2Δ icl1Δ) did not show any growth. Therefore, both the pyruvate carboxylase and the glyoxylate cycle are involved in anaplerosis during growth on glycerol.


Asunto(s)
Glicerol/metabolismo , Piruvato Carboxilasa/genética , Piruvato Carboxilasa/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Medios de Cultivo/química , Etanol/metabolismo , Eliminación de Gen , Glucosa/metabolismo , Glioxilatos/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética
3.
Metab Eng ; 38: 464-472, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27750033

RESUMEN

One advantage of using glycerol as a carbon source for industrial bioprocesses is its higher degree of reduction compared to glucose. In order to exploit this reducing power for the production of reduced compounds thereby significantly increasing maximum theoretical yields, the electrons derived from glycerol oxidation must first be saved in the form of cytosolic NAD(P)H. However, the industrial platform organism Saccharomyces cerevisiae naturally uses an FAD-dependent pathway for glycerol catabolism transferring the electrons to the respiratory chain. Here, we developed a pathway replacement strategy forcing glycerol catabolism through a synthetic, NAD+-dependent route. The required expression cassettes were integrated via CRISPR-Cas9 targeting the endogenous GUT1 locus, thereby abolishing the native FAD-dependent pathway. Interestingly, this pathway replacement even established growth in synthetic glycerol medium of strains naturally unable to grow on glycerol and an engineered derivative of CEN.PK even showed the highest ever reported maximum specific growth rate on glycerol (0.26h-1).


Asunto(s)
Mejoramiento Genético/métodos , Glicerol Quinasa/genética , Glicerol/metabolismo , Ingeniería Metabólica/métodos , Redes y Vías Metabólicas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Vías Biosintéticas/genética , Proliferación Celular/genética , Saccharomyces cerevisiae/citología
4.
Artículo en Inglés | MEDLINE | ID: mdl-32671027

RESUMEN

Previously, our lab replaced the endogenous FAD-dependent pathway for glycerol catabolism in S. cerevisiae by the synthetic NAD-dependent dihydroxyacetone (DHA) pathway. The respective modifications allow the full exploitation of glycerol's higher reducing power (compared to sugars) for the production of the platform chemical succinic acid (SA) via a reductive, carbon dioxide fixing and redox-neutral pathway in a production host robust for organic acid production. Expression cassettes for three enzymes converting oxaloacetate to SA in the cytosol ("SA module") were integrated into the genome of UBR2 CBS-DHA, an optimized CEN.PK derivative. Together with the additional expression of the heterologous dicarboxylic acid transporter DCT-02 from Aspergillus niger, a maximum SA titer of 10.7 g/L and a yield of 0.22 ± 0.01 g/g glycerol was achieved in shake flask (batch) cultures. Characterization of the constructed strain under controlled conditions in a bioreactor supplying additional carbon dioxide revealed that the carbon balance was closed to 96%. Interestingly, the results of the current study indicate that the artificial "SA module" and endogenous pathways contribute to the SA production in a highly synergistic manner.

5.
Biotechnol Adv ; 37(6): 107378, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30930107

RESUMEN

Glycerol is an interesting alternative carbon source in industrial bioprocesses due to its higher degree of reduction per carbon atom compared to sugars. During the last few years, significant progress has been made in improving the well-known industrial platform organism Saccharomyces cerevisiae with regard to its glycerol utilization capability, particularly in synthetic medium. This provided a basis for future metabolic engineering focusing on the production of valuable chemicals from glycerol. However, profound knowledge about the central carbon catabolism in synthetic glycerol medium is a prerequisite for such incentives. As a matter of fact, the current assumptions about the actual in vivo fluxes active on glycerol as the sole carbon source have mainly been based on omics data collected in complex media or were even deduced from studies with other non-fermentable carbon sources, such as ethanol or acetate. A number of uncertainties have been identified which particularly regard the role of the glyoxylate cycle, the subcellular localization of the respective enzymes, the contributions of mitochondrial transporters and the active anaplerotic reactions under these conditions. The review scrutinizes the current knowledge, highlights the necessity to collect novel experimental data using cells growing in synthetic glycerol medium and summarizes the current state of the art with regard to the production of valuable fermentation products from a carbon source that has been considered so far as 'non-fermentable' for the yeast S. cerevisiae.


Asunto(s)
Saccharomyces cerevisiae , Carbono , Fermentación , Glicerol , Ingeniería Metabólica , Proteínas de Saccharomyces cerevisiae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA