Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(5): 2093-2104, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36696288

RESUMEN

Greenhouse gas (GHG) emissions from integrated urban drainage systems (IUDSs), including sewer, wastewater treatment plants (WWTPs), and receiving water systems, have not yet been integrated due to the lack of modeling tools. Here, we updated the computable general equilibrium-based System Dynamics and Water Environmental Model (CGE-SyDWEM), a recently developed model simulating the water-energy-carbon nexus at the watershed level, to calculate the direct and indirect (electricity use and external) GHG emissions from IUDSs considering carbon mitigation strategies and water engineering practices. The updated CGE-SyDWEM was applied to an estuary watershed in Shenzhen, the fourth largest city in China. With increasing socio-economic development and water infrastructure systems upgrading, GHG emissions are projected to increase from 129.2 (95% CI: 95.9-162.5) kt in 2007 to 190.7 (144.8-236.6) kt in 2025, with 89% from WWTPs (direct: 17%; electricity use: 65%; and external: 7%), 10% from the sewer (direct: 1% and electricity use: 9%) and 1% from receiving waters (direct). Carbon mitigation can reduce GHG emissions by 7% and emission intensity by 6% by 2025, with 63% contributed by external emission reduction from chemical uses. The integrated model can aid water, energy, and carbon decision-makers in finding cost-effective solutions for water and energy security in the future.


Asunto(s)
Gases de Efecto Invernadero , Carbono , Agua , Dióxido de Carbono/análisis , China , Efecto Invernadero
2.
Plant Dis ; 2022 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-35253488

RESUMEN

Sweetpotato (Ipomoea batatas) is the eighth major food crop cultivated worldwide with annual production of 89.5 million tons (FAO 2020). China is the world's biggest producer of sweetpotato, and Guangdong Province has the fourth-largest sweetpotato growing area and the biggest sweetpotato market in China (Huang et al. 2020a). Sweetpotato leaves are a key organ providing nutrients for humans and animals, and are popular with customers in Guangdong. On October 14, 2021, a white rust affecting sweetpotato leaves was observed in the fields of Yunfu, Guangdong (22°54'55''N, 112°02'40''E) when conditions were humid, rainy and relatively mild. The adaxial surface of the infected leaves initially exhibited irregular light-yellow or yellow spots, which gradually turned to brown and necrotic. Meanwhile, tiny, powdery, chalky-white pustules, typical of white rust, dispersed individually or in clusters were observed on the corresponding underside of lesions, resulting in wrinkled leaves or abscission. For further analysis in the laboratory, affected leaf pieces (5 mm × 5 mm) containing raised pustules were examined using a scanning electron microscope (S-3400N-Ⅱ, Hitachi, Japan) at 5kv. The micrographs revealed numerous cylindrical-shaped sporangia released from broken pustules. The surfaces of globose oospores were covered with tiny papillae in a reticular pattern. Based on the morphological analyses, the pathogen was preliminarily identified as an Albugo sp. Crude genomic DNA of a few pustules from the diseased leaves were extracted and subjected to PCR amplification using a 2×T5 Direct PCR kit (TSE011, Tsingke, China) with the primers, ITS1/ITS4 (White et al. 1990). PCR products were detected using agarose gel electrophoresis and sequenced by Tsingke company (Guangzhou, China). The sequences were compared against the NCBI database using the BLASTn search tool. The two best-matched alignments with over 90% query coverage showed that ITS sequence amplified from the sample, which was deposited in GenBank (OM182104), was ≥97% identical to those from two isolates of A. ipomoeae-panduratae from China (AY742741) and Korea (DQ643920). A. ipomoeae-panduratae primarily causes white rust on sweetpotato (Moyer and Clark 2013) and is an obligate parasite not culturable in vitro. To demonstrate pathogenicity, spores collected from symptomatic sweetpotato leaves were mixed with sterile water and sprayed onto leaves of three healthy sweetpotato plants. Inoculated plants were then placed at 21℃ and 93% relative humidity. Three other healthy plants treated with sterile water without spores served as the control group. After 12 days, chlorosis and necrosis were observed on the upper leaf surface; and raised white pustules appeared on the lower leaf surface. No symptoms were observed in the noninoculated control plants. To the best of our knowledge, this is the first report of white rust, caused by A. ipomoeae-panduratae, affecting sweetpotato in Guangdong, China. White rust on sweetpotato has also been reported in other provinces in China (Huang et al. 2020b), and the detrimental effects and control measures of this disease should be studied further.

3.
Clin Lab ; 64(10): 1701-1708, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30336539

RESUMEN

BACKGROUND: Gonadotropin-releasing hormone stimulation test is a gold standard for evaluating the function of the hypothalamic-pituitary-gonadal axis (HPGA) in children. These tests are usually uncomfortable because of multi-venipunctures. A urine specimen is a good alternative because it is noninvasive and convenient. More studies have shown the correlation between sera and urine LH and FSH levels under different physiological and pathological conditions. METHODS: The study investigated the dynamic trends of urine LH (uLH) and FSH (uFSH) assayed by immunochemiluminometric assays (ICMA) during triptorelin stimulation tests in girls. The triptorelin stimulation tests were performed in 52 girls with disorders of puberty. The time 0 hour was regarded as the start time of the test (8:30 am). The day before the tests, urine samples were collected at 12 hours diurnal (-24 hours ~ -12 hours) and nocturnal (-12 hours ~ 0 hour) time points. On the day of the testing, the first 12 hours (0 hour ~ 12 hours), the second 12 hours (12 hours ~ 24 hours), the third 12 hours (24 hours ~ 36 hours), the fourth 12 hours (36 hours ~ 48 hours), the third and fourth overnight urine samples were also collected. The LH and FSH levels were assayed by ICMA, and uLH and uFSH were corrected for creatinine (Cr). RESULTS: The HPGA in 41 girls was activated but it was nonactivated in 11 girls. In girls with HPGA activated, uLH/Cr or uFSH/Cr was significantly elevated within 24 hours, and gradually dropped to baseline after 48 hours. When HPGA was nonactivated in girls, there were the same dynamic trends but much lower amplitude of uLH/Cr or uFSH/Cr, which dropped to baseline after 24 hours. CONCLUSIONS: The stimulated uLH and uFSH assayed by ICMA are valuable for evaluating the function of HPGA in girls, and the valuable time window is within 24 hours.


Asunto(s)
Hormona Folículo Estimulante/orina , Inmunoensayo/métodos , Hormona Luteinizante/orina , Pamoato de Triptorelina/administración & dosificación , Adolescente , Niño , Preescolar , Creatinina/orina , Femenino , Gónadas/efectos de los fármacos , Gónadas/fisiología , Humanos , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/fisiología , Mediciones Luminiscentes/métodos , Proyectos Piloto , Sistema Hipófiso-Suprarrenal/efectos de los fármacos , Sistema Hipófiso-Suprarrenal/fisiología , Pubertad/efectos de los fármacos , Pubertad/fisiología
4.
Front Plant Sci ; 14: 1131735, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37123826

RESUMEN

Cucumber is one of the most important vegetable crops, which is widely planted all over the world. Cucumber always suffers from high-temperature stress in South China in summer. In this study, liquid chromatography-mass spectrometry (LC-MS) analysis was used to study the differential metabolites of cucumber anther between high-temperature (HT) stress and normal condition (CK). After HT, the pollen fertility was significantly reduced, and abnormal anther structures were observed by the paraffin section. In addition, the metabolomics analysis results showed that a total of 125 differential metabolites were identified after HT, consisting of 99 significantly upregulated and 26 significantly downregulated metabolites. Among these differential metabolites, a total of 26 related metabolic pathways were found, and four pathways showed significant differences, namely, porphyrin and chlorophyll metabolism; plant hormone signal transduction; amino sugar and nucleotide sugar metabolism; and glycine, serine, and threonine metabolism. In addition, pollen fertility was decreased by altering the metabolites of plant hormone signal transduction and amino acid and sugar metabolism pathway under HT. These results provide a comprehensive understanding of the metabolic changes in cucumber anther under HT.

5.
Microbiol Spectr ; 10(4): e0068322, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35863027

RESUMEN

Sweetpotato (Ipomoea batatas) is the eighth most important crop globally. However, the production and quality of sweetpotatoes are threatened by Fusarium diseases that are prevalent around the world. In this study, a Fusarium species that causes root and stem rot in sweetpotatoes was studied. The pathogenic fungus CRI 24-3 was isolated and sequenced using third- and next-generation sequencing techniques and a 49.6 Mb chromosome-level draft genome containing 15,374 putative coding genes were obtained. Molecular phylogenetic analysis showed that CRI 24-3 was an F. solani-melongenae strain within clade 3 of the F. solani species complex (FSSC). CRI 24-3 showed a relatively high number of virulence factors, such as carbohydrate-active enzymes (CAZymes), pathogen-host interaction (PHI) proteins, and terpene synthases (TSs), compared with the number of those identified in other sequenced FSSC members. Comparative genome analysis revealed considerable conservation and unique characteristics between CRI 24-3 and other FSSC species. In conclusion, the findings in the current study provide important genetic information about F. solani-melongenae and should be useful in the exploration of pathogenicity mechanisms and the development of Fusarium disease management strategies. IMPORTANCE Fusarium root and stem rot in sweetpotato are prevalent in the main sweetpotato-growing areas in China, and fungal isolation, morphological characteristics, and molecular phylogenetic analysis of the disease causal agent (F. solani-melongenae isolate CRI 24-3) were systematically studied. The genome sequence of F. solani-melongenae isolates CRI 24-3 was first reported, which should provide a basis for genome assembly of other closely related Fusarium species. Carbohydrate-active enzymes predicted in CRI 24-3 may be important to convert the substantial polysaccharides to sustainable and renewable energy. Moreover, other virulence factors facilitating Fusarium diseases, including effectors and toxic secondary metabolites, are ideal objects for pathogenicity mechanism research and molecular targets for fungicide development. The findings of comparative genome analysis of CRI 24-3 and 15 sequenced members of the F. solani species complex help promote an integral understanding of genomic features and evolutionary relationships in Fusarium.


Asunto(s)
Fusarium , Carbohidratos , Fusarium/genética , Filogenia , Enfermedades de las Plantas/microbiología , Factores de Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA