Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 28(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37298937

RESUMEN

Chemotherapy is currently one of the most widely used treatments for cancer. However, traditional chemotherapy drugs normally have poor tumor selectivity, leading to insufficient accumulation at the tumor site and high systemic cytotoxicity. To address this issue, we designed and prepared a boronic acid/ester-based pH-responsive nano-drug delivery system that targets the acidic microenvironment of tumors. We synthesized hydrophobic polyesters with multiple pendent phenylboronic acid groups (PBA-PAL) and hydrophilic PEGs terminated with dopamine (mPEG-DA). These two types of polymers formed amphiphilic structures through phenylboronic ester linkages, which self-assembled to form stable PTX-loaded nanoparticles (PTX/PBA NPs) using the nanoprecipitation method. The resulting PTX/PBA NPs demonstrated excellent drug encapsulation efficiency and pH-triggered drug-release capacity. In vitro and in vivo evaluations of the anticancer activity of PTX/PBA NPs showed that they improved the pharmacokinetics of drugs and exhibited high anticancer activity while with low systemic toxicity. This novel phenylboronic acid/ester-based pH-responsive nano-drug delivery system can enhance the therapeutic effect of anticancer drugs and may have high potential for clinical transformations.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Sistema de Administración de Fármacos con Nanopartículas , Antineoplásicos/química , Ácidos Borónicos , Neoplasias/tratamiento farmacológico , Concentración de Iones de Hidrógeno , Nanopartículas/química , Sistemas de Liberación de Medicamentos/métodos , Línea Celular Tumoral , Paclitaxel/química , Portadores de Fármacos/química , Microambiente Tumoral
2.
Int J Mol Sci ; 23(9)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35563405

RESUMEN

Polyethylenimine (PEI) has been widely used in gene delivery. However, its high cytotoxicity and undesired non-specific protein adsorption hinder the overall delivery efficacy and the practical applications of PEI-based gene delivery systems. In this study, we prepared hydrophobically modified PEIs (H-PEIs) via the reaction of octanal with 40% of primary amines in PEI25k and PEI10k, respectively. Two common zwitterionic molecules, 1,3-propanesultone and ß-propiolactone, were then used for the modification of the resulting H-PEIs to construct polycationic gene carriers with zwitterionic properties (H-zPEIs). The siRNA delivery efficiency and cytotoxicity of these materials were evaluated in Hela-Luc and A549-Luc cell lines. Compared with their respective parental H-PEIs, different degrees of zwitterionic modification showed different effects in reducing cytotoxicity and delivery efficiency. All zwitterion-modified PEIs showed excellent siRNA binding capacity, reduced nonspecific protein adsorption, and enhanced stability upon nuclease degradation. It is concluded that zwitterionic molecular modification is an effective method to construct efficient vectors by preventing undesired interactions between polycationic carriers and biomacromolecules. It may offer insights into the modification of other cationic carriers of nucleic acid drugs.


Asunto(s)
Técnicas de Transferencia de Gen , Polietileneimina , Terapia Genética , Células HeLa , Humanos , Polietileneimina/química , ARN Interferente Pequeño/metabolismo , Transfección
3.
J Mater Chem B ; 12(12): 3115-3128, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38451094

RESUMEN

The development of safe and effective delivery systems is critical for the clinical applications of siRNA-based therapeutics. Polymer-based vectors have garnered significant attention owing to their structural flexibility and functional tunability. Polyethyleneimine (PEI) has been extensively studied for nucleic acid delivery; nevertheless, its high cytotoxicity has posed challenges for clinical applications. In this study, we have reported poly(glycidyl amine) (PGAm), a linear PEI analogue, demonstrating remarkable siRNA delivery efficacy and improved biocompatibility. By introducing three aromatic moieties (tyrosine, p-hydroxybenzenepropanoic acid, and phenylalanine) at varying ratios to further modify PGAms, we successfully constructed a library comprising 36 PGAm-based carriers. In vitro evaluations revealed that PGAm-based carriers exhibited significantly enhanced biocompatibility and reduced non-specific protein absorption in comparison to PEI25k. Among them, 10 modified PGAms achieved a knockdown of target gene expressions exceeding 80%, and 26 modified PGAms maintained over 70% cell viability when utilized for the in vitro delivery of siRNA to HeLa cells. Explorations into the structure-activity relationship of PGAm-based polyplex nanoparticles (NPs) indicated that the siRNA delivery efficacy of NPs depended on factors such as the molecular weight of PGAm precursors, the type of modifying moieties, and the modification ratio. Furthermore, it was demonstrated that two top-performing NPs, namely 2T100/siLuc and 2A50/siLuc, exhibited potent silencing of target genes in tumors following i.v. injection into mice bearing HeLa-Luc xenografts. The in vivo efficacy of the selected NPs was further validated by a remarkable anti-cancer effect when employed for the delivery of siRNA targeting polo-like kinase 1 (siPLK1) to mice with PC-3 xenograft tumors. The intravenous administration of NPs resulted in a substantial inhibition of tumor growth without significant toxicity. These findings demonstrate the feasibility of employing PGAm in siRNA delivery and provide valuable insights for the development of efficient siRNA carriers based on PGAm.


Asunto(s)
Aminas , Neoplasias , Humanos , Animales , Ratones , Células HeLa , ARN Interferente Pequeño/metabolismo , Línea Celular Tumoral , Polímeros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA