Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 23(7)2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35409428

RESUMEN

Fatty acid composition is a key factor affecting the flavor and quality of goat milk. CircRNAs are now recognized as important regulators of transcription, and they play an important role in the control of fatty acid synthesis. Thus, understanding the regulatory mechanisms controlling this process in ruminant mammary glands is of great significance. In the present study, mammary tissue from dairy goats during early lactation and the dry period (nonlactating) were collected and used for high-throughput sequencing. Compared to levels during the dry period, the expression level of circ003429 during early lactation was lower (12.68-fold downregulated). In isolated goat mammary epithelial cells, circ003429 inhibited the synthesis of triglycerides (TAG) and decreased the content of unsaturated fatty acids (C16:1, C18:1, and C18:2), indicating that this circRNA plays an important role in regulating lipid synthesis. A binding site for miR-199a-3p in the circ003429 sequence was detected, and a dual-luciferase reporter system revealed that circ003429 targets miR-199a-3p. Overexpression of circ003429 (pcDNA-circ003429) downregulated the abundance of miR-199a-3p. In contrast, overexpression of miR-199a-3p increased TAG content and decreased mRNA abundance of Yes-associated protein 1 (YAP1) (a target gene of miR-199a-3p), and TAG content was decreased and mRNA abundance was increased in response to overexpression of circ003429. These results indicate that circ003429 alleviates the inhibitory effect of miR-199a-3p on the mRNA abundance of YAP1 by binding miR-199a-3p, resulting in subsequent regulation of the synthesis of TAG and unsaturated fatty acids.


Asunto(s)
Glándulas Mamarias Animales , MicroARNs , Animales , Células Epiteliales/metabolismo , Ácidos Grasos/metabolismo , Ácidos Grasos Insaturados/metabolismo , Femenino , Cabras/genética , Cabras/metabolismo , Glándulas Mamarias Animales/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular , ARN Mensajero/genética
2.
J Sci Food Agric ; 99(15): 6751-6760, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31353469

RESUMEN

BACKGROUND: Yeast products showed beneficial effects with respect to stabilizing ruminal pH, stimulating ruminal fermentation and improving production efficiency. Batch cultures were conducted to evaluate the effects of yeast products on gas production (GP), dry matter disappearance (DMD) and fermentation characteristics of high-forage substrate. The study was a two media pH (5.8 and 6.5) × five yeasts (three live yeasts, LY: LY1, LY2, LY3; two yeast derivatives, YD: YD4, YD5) × four dosages factorial arrangement, with monensin (Mon) assigned as a positive control. RESULTS: Greater (P < 0.01) GP, DMD, volatile fatty acid (VFA) concentration, ratio of acetate to propionate (A:P) and copy numbers of Fibrobacter succinogenes and Ruminococcus flavefaciens were observed at pH 6.5 than at pH 5.8. The GP kinetics, DMD, VFA concentration, A:P and NH3 -N concentration differed (P < 0.05) among yeasts but varied with media pH or yeast dosages. Increasing doses of LY3 linearly increased DMD (P < 0.04) and VFA concentration (P < 0.001) at media pH 5.8. The DMD linearly (P < 0.02) increased with increased addition of YD4 (pH 6.5) and YD5 (pH 5.8) and the ratio of A:P linearly decreased (P < 0.01) with the addition of YD4 or YD5 at pH 5.8. Overall greater (P < 0.05) GP, A:P (pH 5.8) and DMD (pH 6.5) were observed with yeast products than with Mon. CONCLUSION: LY3 appeared to be an interesting candidate for improving rumen digestibility and fermentation efficiency, particularly at low media pH. YD4 or YD5 improved fermentation efficiency and can be potentially fed as an alternative to Mon. © 2019 Her Majesty the Queen in Right of Canada Journal of the Science of Food and Agriculture © 2019 Society of Chemical Industry.


Asunto(s)
Alimentación Animal/microbiología , Bovinos/metabolismo , Rumen/química , Saccharomyces cerevisiae/química , Levadura Seca/química , Alimentación Animal/análisis , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Bovinos/crecimiento & desarrollo , Bovinos/microbiología , Digestión , Ácidos Grasos Volátiles/metabolismo , Microbioma Gastrointestinal , Concentración de Iones de Hidrógeno , Rumen/metabolismo , Rumen/microbiología , Saccharomyces cerevisiae/clasificación , Levadura Seca/clasificación
3.
J Anim Sci Biotechnol ; 15(1): 3, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38225608

RESUMEN

BACKGROUND: Clostridium butyricum (CB) is a probiotic that can regulate intestinal microbial composition and improve meat quality. Rumen protected fat (RPF) has been shown to increase the dietary energy density and provide essential fatty acids. However, it is still unknown whether dietary supplementation with CB and RPF exerts beneficial effects on growth performance and nutritional value of goat meat. This study aimed to investigate the effects of dietary CB and RPF supplementation on growth performance, meat quality, oxidative stability, and meat nutritional value of finishing goats. Thirty-two goats (initial body weight, 20.5 ± 0.82 kg) were used in a completely randomized block design with a 2 RPF supplementation (0 vs. 30 g/d) × 2 CB supplementation (0 vs. 1.0 g/d) factorial treatment arrangement. The experiment included a 14-d adaptation and 70-d data and sample collection period. The goats were fed a diet consisted of 400 g/kg peanut seedling and 600 g/kg corn-based concentrate (dry matter basis). RESULT: Interaction between CB and RPF was rarely observed on the variables measured, except that shear force was reduced (P < 0.05) by adding CB or RPF alone or their combination; the increased intramuscular fat (IMF) content with adding RPF was more pronounced (P < 0.05) with CB than without CB addition. The pH24h (P = 0.009), a* values (P = 0.007), total antioxidant capacity (P = 0.050), glutathione peroxidase activities (P = 0.006), concentrations of 18:3 (P < 0.001), 20:5 (P = 0.003) and total polyunsaturated fatty acids (P = 0.048) were increased, whereas the L* values (P < 0.001), shear force (P = 0.050) and malondialdehyde content (P = 0.044) were decreased by adding CB. Furthermore, CB supplementation increased essential amino acid (P = 0.027), flavor amino acid (P = 0.010) and total amino acid contents (P = 0.024) as well as upregulated the expression of lipoprotein lipase (P = 0.034) and peroxisome proliferator-activated receptor γ (PPARγ) (P = 0.012), and downregulated the expression of stearoyl-CoA desaturase (SCD) (P = 0.034). The RPF supplementation increased dry matter intake (P = 0.005), averaged daily gain (trend, P = 0.058), hot carcass weight (P = 0.046), backfat thickness (P = 0.006), concentrations of 16:0 (P < 0.001) and c9-18:1 (P = 0.002), and decreased the shear force (P < 0.001), isoleucine (P = 0.049) and lysine content (P = 0.003) of meat. In addition, the expressions of acetyl-CoA carboxylase (P = 0.003), fatty acid synthase (P = 0.038), SCD (P < 0.001) and PPARγ (P = 0.022) were upregulated due to RPF supplementation, resulting in higher (P < 0.001) content of IMF. CONCLUSIONS: CB and RPF could be fed to goats for improving the growth performance, carcass traits and meat quality, and promote fat deposition by upregulating the expression of lipogenic genes of Longissimus thoracis muscle.

4.
Toxins (Basel) ; 14(5)2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35622607

RESUMEN

Experiments were conducted to evaluate the effects of an aflatoxin B1 (AFB1)-contaminated diet treated with ammonia on the diet detoxification and growth performance, nutrient digestibility, nitrogen utilization, and blood metabolites in sheep. Twenty-four female mutton sheep with an initial body weight of 50 ± 2.5 kg were randomly assigned to one of three groups: (1) control diet (C); (2) aflatoxin diet (T; control diet supplemented with 75 µg of AFB1/kg of dry matter); and (3) ammoniated diet (AT; ammoniated aflatoxin diet). The results showed decreases (p < 0.05) in average daily feed intake, nutrient digestibility of dry matter, crude protein and ether extract, and retained nitrogen, and an increase (p < 0.05) in urine nitrogen excretion in sheep fed diet T compared with those fed the other diets. In comparison to C and AT, feeding T decreased (p < 0.05) the concentrations of total protein, immunoglobulin A, immunoglobulin G, immunoglobulin M, superoxide dismutase, and total antioxidants and increased (p < 0.05) the concentrations of alanine amino transferase, malondialdehyde, and interleukin-6. In summary, ammonia treatment has the potential to decrease the concentration of AFB1 and alleviate the adverse effects of AFB1.


Asunto(s)
Aflatoxina B1 , Alimentación Animal , Aflatoxina B1/toxicidad , Amoníaco , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Femenino , Nitrógeno , Ovinos
5.
Front Microbiol ; 13: 912042, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35814667

RESUMEN

Clostridium butyricum (C. butyricum) can survive at low pH, and it has been widely used as an alternative to antibiotics for the improvement of feed efficiency and animal health in monogastrics. A recent study suggested that the improved ruminal fermentation with supplementing C. butyricum is may be associated with increasing the abundance of rumen microbiota in Holstein heifers, as ruminal pH plays a key role in rumen microbiota and the probiotics are often active in a dose-dependent manner. The objective of this study was to determine the effects of increasing the doses of C. butyricum on gas production (GP) kinetics, dry matter disappearance (DMD), fermentation characteristics, and rumen microbiota using a high grain substrate in batch culture varying with media pH levels. The doses of C. butyricum were supplemented at 0 (control), 0.5 × 106, 1 × 106, and 2 × 106 CFU/bottle, respectively, at either media pH 6.0 or pH 6.6. The fermentation microbiota at 0 and 1 × 106 CFU/bottle were determined using the 16S rRNA high throughput sequencing technology. Overall, the GP, DMD, total volatile fatty acid (VFA) concentration, and the ratio of acetate:propionate were higher (P <0.01) at media pH 6.6 than at pH 6.0. However, there was interaction between pH × dose of C. butyricum for rate constant of GP (P = 0.01), average GP rate (P = 0.07), and volume of GP (P = 0.06); with the increase in C. butyricum supplementation, the GP kinetics were not changed at media pH 6.0, but the volume (P = 0.02), rate of GP (P = 0.01), and average GP rate (P = 0.01) were quadratically changed at media pH 6.6. The DMD was not affected by increasing the supplementation of C. butyricum. The molar proportions of propionate (P <0.09), butyrate (P <0.06), and NH3-N concentration (P = 0.02) were quadratically changed with increasing supplementation of C. butyricum regardless of media pH levels. The interactions between media pH level and dose of C. butyricum supplementation were noticed for alpha diversity indexes of Shannon (P = 0.02) and Evenness (P = 0.04). The alpha diversity indexes increased (P <0.05) except for Chao1 with supplementation of C. butyricum. The unweighted uniFrac analysis showed that the group of control at media pH 6.0 and control at media pH 6.6, and supplementation of C. butyricum and control at media pH 6.0 clustered separately from each other. At the phylum level, relative abundance (RA) of Bacteroidota was lower (P <0.01) and Firmicutes was higher (P <0.01) at media pH 6.6 than pH 6.0. Moreover, RA of Proteobacteria decreased (P <0.05) with supplemented C. butyricum at either media pH 6.6 or pH 6.0. At media pH 6.6, RA of Rikenellaceae_RC9_gut_group and Prevotella were decreased, and CAG-352 was increased (at genus level) compared to pH 6.0. Supplementation of C. butyricum decreased RA of Rikenellaceae_RC9_gut_group and increased CAG-352 at media pH 6.0. It could hence be concluded that manipulating media pH level and supplementation of C. butyricum effectively modulated in vitro rumen fermentation characteristics and microbiota but in a dose depending manner of C. butyricum addition.

6.
J Anim Sci ; 98(4)2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32068850

RESUMEN

Our previous study suggested that supplementation of high-grain diets with ruminally protected and non-protected active dried yeast (ADY) may potentially reduce manure pathogen excretion by feedlot cattle. We hypothesized that feeding ruminally protected ADY might change the fecal bacterial community of finishing cattle. The objective of this study was to investigate the effects of feeding ruminally protected and non-protected ADY to finishing beef steers on their fecal bacterial community. Fresh fecal samples were collected on day 56 from 50 steers fed one of five treatments: 1) control (no monensin, tylosin, or ADY), 2) antibiotics (ANT, 330 mg monensin + 110 mg tylosin·steer-1d-1), 3) ADY (1.5 g·steer-1d-1), 4) encapsulated ADY (EDY; 3 g·steer-1d-1), and 5) a mixture of ADY and EDY (MDY; 1.5 g ADY + 3 g EDY·steer-1d-1). Bacterial DNA was extracted from fecal samples and sequenced using a MiSeq high-throughput sequencing platform. A total number of 2,128,772 high-quality V4 16S rRNA sequences from 50 fecal samples were analyzed, and 1,424 operational taxonomic units (OTU) were detected based on 97% nucleotide sequence identity among reads, with 769 OTU shared across the five treatments. Alpha diversity indices, including species observed, Chao estimate, abundance-based coverage estimator, Shannon, Simpson, and coverage, did not differ among treatments, and principal coordinate analysis revealed a high similarity among treatments without independent distribution. Bacteroidetes and Firmicutes were dominant phyla in the fecal bacterial community for all treatments, with a tendency (P < 0.10) for greater relative abundance of Bacteroidetes but lesser Firmicutes with ANT, EDY, and MDY compared with control steers. Prevotella was the dominant genus in all treatments and steers supplemented with ANT, EDY, and MDY had greater (P < 0.05) relative abundance of Prevotella than control steers, but lesser (P < 0.03) relative abundance of Oscillospira. No differences between ADY and control were observed for the aforementioned variables. Fecal starch contents were not different among treatments, but the relative abundance of Bacteroidetes, as well as Prevotella at genera level, tended (P < 0.06) to be positively correlated to fecal starch content. We conclude that supplementing ruminally protected or non-protected ADY or ANT had no effect on diversity and richness of fecal bacteria of finishing beef cattle, whereas feeding protected ADY or ANT to finishing beef steers altered the dominant fecal bacteria at phylum and genus levels. Therefore, supplementation of ruminally protected ADY may potentially improve intestinal health by stimulating the relative abundance of Prevotella.


Asunto(s)
Alimentación Animal/análisis , Dieta/veterinaria , Suplementos Dietéticos , Heces/microbiología , Levadura Seca/farmacología , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bovinos , Masculino , ARN Ribosómico 16S/genética
7.
Genes (Basel) ; 11(2)2020 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-32069836

RESUMEN

The aim of the study was to understand the internal relationship between milk quality and lipid metabolism in cow mammary glands. A serial of studies was conducted to assess the molecular mechanism of PRL/microRNA-183/IRS1 (Insulin receptor substrate) pathway, which regulates milk fat metabolism in dairy cows. microRNA-183 (miR-183) was overexpressed and inhibited in cow mammary epithelial cells (CMECs), and its function was detected. The function of miR-183 in inhibiting milk fat metabolism was clarified by triglycerides (TAG), cholesterol and marker genes. There is a CpG island in the 5'-flanking promoter area of miR-183, which may inhibit the expression of miR-183 after methylation. Our results showed that prolactin (PRL) inhibited the expression of miR-183 by methylating the 5' terminal CpG island of miR-183. The upstream regulation of PRL on miR-183 was demonstrated, and construction of the lipid metabolism regulation network of microRNA-183 and target gene IRS1 was performed. These results reveal the molecular mechanism of PRL/miR-183/IRS1 pathway regulating milk fat metabolism in dairy cows, thus providing an experimental basis for the improvement of milk quality.


Asunto(s)
Proteínas Sustrato del Receptor de Insulina/genética , Metabolismo de los Lípidos , Glándulas Mamarias Animales/citología , MicroARNs/genética , Leche/metabolismo , Prolactina/genética , Animales , Bovinos , Células Cultivadas , Metilación de ADN , Regulación hacia Abajo , Epigénesis Genética , Células Epiteliales/citología , Células Epiteliales/metabolismo , Femenino , Glándulas Mamarias Animales/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA