Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Environ Sci Technol ; 54(9): 5822-5831, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32216296

RESUMEN

Nitrite oxidizing bacteria (NOB) and nitrous oxide (N2O) hinder the development of mainstream partial nitritation/anammox. To overcome these, endogenous free ammonia (FA) and free nitrous acid (FNA), which can be produced in the sidestream, were used for return-sludge treatment for two integrated-film activated sludge reactors containing biomass in flocs and on carriers. The repeated exposure of biomass from one reactor to FA shocks had a limited impact on NOB suppression but inhibited anammox bacteria (AnAOB). In the other reactor, repeated FNA shocks to the separated flocs failed to limit the system's nitrate production since NOB activity was still high on the biofilms attached to the unexposed carriers. In contrast, the repeated FNA treatment of flocs and carriers favored aerobic ammonium-oxidizing bacteria (AerAOB) over NOB activity with AnAOB negligibly affected. It was further revealed that return-sludge treatment with higher FNA levels led to lower N2O emissions under similar effluent nitrite concentrations. On this basis, weekly 4 h FNA shocks of 2.0 mg of HNO2-N/L were identified as an optimal and realistic treatment, which not only enabled nitrogen removal efficiencies of ∼65% at nitrogen removal rates of ∼130 mg of N/L/d (20 °C) but also yielded the lowest cost and carbon footprint.


Asunto(s)
Ácido Nitroso , Aguas del Alcantarillado , Reactores Biológicos , Nitratos , Nitritos , Nitrógeno , Oxidación-Reducción
2.
Water Sci Technol ; 76(5-6): 1261-1271, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28876268

RESUMEN

This study examined the feasibility of nanoscale zero-valent iron (nZVI) for the single and combined removal of Cr(VI) and Cd(II) with or without ethylene diamine disuccinic acid (EDDS). The effects of pH and dissolved oxygen (DO) on the removal process were investigated. Results show that the single removal of either Cr(VI) or Cd(II) by nZVI was pH dependent, where the higher Cr(VI) removal was achieved under acidic conditions, whereas the higher Cd(II) removal was achieved under alkaline conditions. The presence of DO enhanced Cd(II) removal but inhibited Cr(VI) removal under alkaline conditions. In the co-existence of Cr(VI) and Cd(II), it was found that Cd(II) exerted insignificant effect on Cr(VI) removal, while the presence of Cr(VI) remarkably enhanced the Cd(II) removal. The addition of EDDS exhibited different influences on Cr(VI) and Cd(II) removal, which were associated with pH and DO. The EDDS enhanced Cr(VI) removal at pH 5.6-9.0 in the absence of DO, but decreased Cr(VI) removal at pH 9.0 in the presence of DO. For the removal of Cd(II) at pH 5.6-7.0, either facilitation or inhibition effect of EDDS was observed, depending on EDDS concentration and the co-existence of Cr(VI). However, Cd(II) removal was always significantly inhibited by EDDS at pH 9.0.


Asunto(s)
Cadmio/química , Cromo/química , Etilenodiaminas/química , Hierro/química , Succinatos/química , Contaminantes Químicos del Agua/química
3.
Bioresour Technol ; 373: 128713, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36758644

RESUMEN

This study pioneers the feasibility of cost-effective partial nitritation/anammox (PN/A) in packed-bed trickling filters (TFs). Three parallel TFs tested different carrier materials, the presence or absence of bottom ventilation openings, hydraulic loading rates (HLR, 0.4-2.2 m3 m-2 h-1), and free ammonia (FA) levels on synthetic medium. The inexpensive Argex expanded clay was recommended due to the similar nitrogen removal rates as commercially used plastics. Top-only ventilation at an optimum HLR of 1.8 m3 m-2 h-1 could remove approximately 60% of the total nitrogen load (i.e., 300 mg N L-1 d-1, 30 °C) and achieve relatively low NO3--N accumulation (13%). Likely FA levels of around 1.3-3.2 mg N L-1 suppressed nitratation. Most of the total nitrogen removal took place in the upper third of the reactor, where anammox activity was highest. Provided further optimizations, the results demonstrated TFs are suitable for low-energy shortcut nitrogen removal.


Asunto(s)
Amoníaco , Compuestos de Amonio , Oxidación Anaeróbica del Amoníaco , Estudios de Factibilidad , Reactores Biológicos , Nitrógeno , Oxidación-Reducción
4.
Sci Total Environ ; 806(Pt 2): 150415, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34852428

RESUMEN

Due to the high water- and nutrient-use efficiency, hydroponic cultivation is increasingly vital in progressing to environment-friendly food production. To further alleviate the environmental impacts of synthetic fertilizer production, the use of recovered nutrients should be encouraged in horticulture and agriculture at large. Solid organic fertilizers can largely contribute to this, yet their physical and chemical nature impedes application in hydroponics. This study proposes a bioreactor for mineralization and nitrification followed by a supplementation step for limiting macronutrients to produce nitrate-based solutions from solid fertilizers, here based on a novel microbial fertilizer. Batch tests showed that aerobic conversions at 35 °C could realize a nitrate (NO3--N) production efficiency above 90% and a maximum rate of 59 mg N L-1 d-1. In the subsequent bioreactor test, nitrate production efficiencies were lower (44-51%), yet rates were higher (175-212 mg N L-1 d-1). Calcium and magnesium hydroxide were compared to control the bioreactor pH at 6.0 ± 0.2, while also providing macronutrients for plant production. A mass balance estimation to mimic the Hoagland nutrient solution showed that 92.7% of the NO3--N in the Ca(OH)2 scenario could be organically sourced, while this was only 37.4% in the Mg(OH)2 scenario. Besides, carbon dioxide (CO2) generated in the bioreactor can be used for greenhouse carbon fertilization to save operational expenditure (OPEX). An estimation of the total OPEX showed that the production of a nutrient solution from solid organic fertilizers can be cost competitive compared to using commercially available liquid inorganic fertilizer solutions.


Asunto(s)
Fertilizantes , Nitratos , Agricultura , Reactores Biológicos , Fertilizantes/análisis , Nitrificación , Nitrógeno/análisis , Nutrientes , Suelo
5.
Sci Total Environ ; 806(Pt 3): 151330, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34717986

RESUMEN

Bioaugmentation with summer harvested sludge during winter could compensate for bacterial activity loss but requires that sludge activity can be restored after storage. This study assesses the effect of temperature and redox adjustment during the storage over 180 days of partial nitritation/anammox (PN/A) granular resp. floccular sludge from potato processing resp. sludge reject water treatment. Anoxic storage conditions (in the presence of nitrite or nitrate and the absence of oxygen) resulted in a loss of 80-100% of the anammox bacteria (AnAOB) activity capacity at 20 °C and 4 °C, while anaerobic conditions (without oxygen, nitrite, and nitrate) lost only 45-63%. Storage at 20 °C was more cost-effective compared to 4 °C, and this was confirmed in the sludge reactivation experiment (20 °C). Furthermore, AnAOB activity correlated negatively with the electrical conductivity level (R2 > 0.85, p < 0.05), so strong salinity increases should be avoided. No significant differences were found in the activity capacity of aerobic ammonia-oxidizing bacteria (AerAOB) under different storage conditions (p > 0.1). The relative abundance of dominant AnAOB (Candidatus Brocadia) and AerAOB genera (Nitrosomonas) remained constant in both sludges. In conclusion, preserving PN/A biomass without cooling and nitrite or nitrate addition proved to be a cost-effective strategy.


Asunto(s)
Compuestos de Amonio , Aguas del Alcantarillado , Reactores Biológicos , Nitratos , Nitritos , Nitrógeno , Oxidación-Reducción , Aguas Residuales
6.
Bioresour Technol ; 342: 125996, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34598074

RESUMEN

Mainstream nitrogen removal by partial nitritation/anammox (PN/A) can realize energy and cost savings for sewage treatment. Selective suppression of nitrite oxidizing bacteria (NOB) remains a key bottleneck for PN/A implementation. A rotating biological contactor was studied with an overhead cover and controlled air/N2 inflow to regulate oxygen availability at 20 °C. Biofilm exposure to dissolved oxygen concentrations < 0.51 ± 0.04 mg O2 L-1 when submerged in the water and < 1.41 ± 0.31 mg O2 L-1 when emerged in the headspace (estimated), resulted in complete and long-term NOB suppression with a low relative nitrate production ratio of 10 ± 4%. Additionally, weekly biofilm stressor treatments with free ammonia (FA) (29 ± 1 mg NH3-N L-1 for 3 h) could improve the NOB suppression while free nitrous acid treatments had insufficient effect. This study demonstrated the potential of managing NOB suppression in biofilm-based systems by oxygen control and recurrent FA exposure, opening opportunities for resource efficient nitrogen removal.


Asunto(s)
Compuestos de Amonio , Nitritos , Bacterias , Biopelículas , Reactores Biológicos , Nitrógeno , Oxidación-Reducción , Oxígeno , Aguas del Alcantarillado
7.
Bioresour Technol ; 253: 112-120, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29331826

RESUMEN

Polyvinylpyrrolidone coated silver nanoparticles (PVP-AgNPs) were applied at different concentrations to reduce total nitrogen (TN) losses and the mechanisms of nitrogen bio-transformation were investigated in terms of the nitrogen functional enzymes and genes. Results showed that mineral N in pile 3 which was treated with AgNPs at a concentration of 10 mg/kg compost was the highest (6.58 g/kg dry weight (DW) compost) and the TN loss (47.07%) was the lowest at the end of composting. Correlation analysis indicated that TN loss was significantly correlated with amoA abundance. High throughput sequencing showed that the dominant family of ammonia-oxidizing bacteria (AOB) was Nitrosomonadaceae, and the number of Operational Taxonomic Units (OTUs) reduced after the beginning of composting when compared with day 1. In summary, treatment with AgNPs at a concentration of 10 mg/kg compost was considerable to reduce TN losses and reserve more mineral N during composting.


Asunto(s)
Compostaje , Nanopartículas del Metal , Nitrógeno , Amoníaco , Plata , Suelo
8.
J Hazard Mater ; 321: 390-407, 2017 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-27669380

RESUMEN

Nanoscale zero-valent iron (NZVI) particles, applied for in-situ subsurface remediation, are inevitable to interact with various microbes in the remediation sites directly or indirectly. This review summarizes their interactions, including the effects of NZVI on microbial activity and growth, the synergistic effect of NZVI and microbes on the contaminant removal, and the effects of microbes on the aging of NZVI. NZVI could exert either inhibitive or stimulative effects on the growth of microbes. The mechanisms of NZVI cytotoxicity (i.e., the inhibitive effect) include physical damage and biochemical destruction. The stimulative effects of NZVI on certain bacteria are associated with the creation of appropriate living environment, either through providing electron donor (e.g., H2) or carbon sources (e.g., the engineered organic surface modifiers), or through eliminating the noxious substances that can cause bactericidal consequence. As a result of the positive interaction, the combination of NZVI and some microbes shows synergistic effect on contaminant removal. Additionally, the aged NZVI can be utilized by some iron-reducing bacteria, resulting in the transformation of Fe(III) to Fe(II), which can further contribute to the contaminant reduction. However, the Fe(III)-reduction process can probably induce environmental risks, such as environmental methylation and remobilization of the previously entrapped heavy metals.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Hierro/química , Nanopartículas/química , Agua Subterránea , Microbiología del Suelo
9.
J Hazard Mater ; 332: 79-86, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28285109

RESUMEN

Three types of modified biochar (BC) were produced respectively with acid (HCl) treatment (HCl-BC), base (KOH) treatment (KOH-BC) and oxidation (H2O2) treatment (H2O2-BC) of raw biochar. Both the raw biochar and modified biochars supported zero valent iron nanopartilces (nZVI) (i.e. nZVI@BC, nZVI@HCl-BC, nZVI@KOH-BC and nZVI@H2O2-BC) were synthesized and their capacities for Cr(VI) removal were compared. The results showed that the nZVI@HCl-BC exhibited the best performance and the underlying mechanisms were discussed. The surface elemental distribution maps of the nZVI@HCl-BC after reaction with Cr(VI) showed that Fe, Cr and O elements were deposited on the surface of HCl-BC evenly, indicating that the formed Cr(III)/Fe(III) could settle on the surface of HCl-BC uniformly rather than coated only on the nZVI surface. This reveals that the supporter HCl-BC could also play a role in alleviating the passivation of nZVI. Besides, the effects of mass ratio (nZVI/HCl-BC), pH, and initial Cr(VI) concentration on Cr(VI) removal were examined. At lower mass of HCl-BC, nZVI aggregation cannot be fully inhibited on the surface of HCl-BC, whereas excessive biochar can block the active sites of nZVI. Additionally, it was found that Cr(VI) removal by nZVI@HCl-BC was dependent on both pH and initial Cr(VI) concentration.


Asunto(s)
Carbón Orgánico/química , Cromo/aislamiento & purificación , Hierro/química , Eliminación de Residuos Líquidos/métodos
10.
J Hazard Mater ; 338: 306-312, 2017 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28578232

RESUMEN

The sequestration of Se(IV) and Se(VI) by nanoscale zero-valent iron (NZVI) particles were compared under different solution conditions. Firstly, the comparison was conducted at three pH values (4.0, 6.0 and 8.0) in deionized water. Generally, the removal of Se(IV)/Se(VI) by NZVI was more rapid under acidic conditions and the removal efficiency of Se(IV) was much higher than that of Se(VI). Moreover, the pH variation exhibited much larger influence on the sequestration of Se(VI) than that of Se(IV) by NZVI. The spectroscopic analysis showed that both the Se(IV) and Se(VI) were reduced to Se0 and Se2-, while NZVI was transformed into iron (hydr)oxides. When the selenium-NZVI reactions occurred in synthetic groundwater, all the reaction systems were inhibited in varying degrees. The individual effects of humic acid (HA) and typical inorganic ions were also examined. It seems that HA could substantially hinder the sequestration of Se(IV) compared with that in deionized water, while sulfate (SO42-) and bicarbonate (HCO3-) inhibited the Se(VI) removal significantly. Notably, the presence of cations (i.e., Na+ or Ca2+) ions did not cause obvious interference to the Se(IV)/Se(VI) removal by NZVI, while the presence of Ca2+ could alleviate the adverse effect of HA on Se(IV) removal to some degree.

11.
Bioresour Technol ; 230: 132-139, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28189966

RESUMEN

This study evaluated the influence of silver nanoparticles (AgNPs) on evolutions of organic matter and nitrogen during co-composting of sewage sludge and agricultural waste. Two co-composting piles were conducted, one was treated without AgNPs (pile 1) and the other with AgNPs (pile 2). Results showed that the AgNPs affected the quality of final composts. Less organic matter (OM) losses were determined in pile 2 (57.96%) than pile 1 (61.66%). 27.22% and 30.1% of the initial total organic matter (TOC) was decomposed in pile 1 and pile 2, respectively. The final water soluble carbon (WSC) concentration in pile 2 was 23559.27mg/kg DW compost which was significantly lower than pile 1 (25642.75mg/kg DW compost). Changes of different forms of nitrogen in the two piles showed that AgNPs could reduce the losses of TN but increase the losses of mineral N.


Asunto(s)
Agricultura , Nanopartículas del Metal/química , Nitrógeno/análisis , Compuestos Orgánicos/análisis , Aguas del Alcantarillado/análisis , Plata/farmacología , Suelo , Residuos/análisis , Carbono/análisis , Concentración de Iones de Hidrógeno , Temperatura , Factores de Tiempo
12.
J Colloid Interface Sci ; 471: 7-13, 2016 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26970032

RESUMEN

This study investigated the correlation between the colloidal stability and reactivity of surface-modified nano zero-valent iron (SM-nZVI) as affected by the surface coating (i.e., polyacrylic acid [PAA] and starch) under various geochemical conditions. Generally, the colloidal stability of nZVI was enhanced with increasing loading of surface coating, while there is an optimum loading for the most efficient Cr(VI) removal by SM-nZVI. At lower loadings than the optimum loading, the surface coating could enhance the particle stabilization, facilitating the Cr(VI) reduction by providing more available surface sites. However, the over-loaded surface coating on the surface of nZVI particles decreased the Cr(VI) reduction due to the occupation of the reactive sites and the inhibition of the mass transfer of Cr(VI) ions from water to the particle surface by providing the electrostatic or steric repulsion. The effects of Ca(2+) ions or humic acid (HA) on the colloidal stability and reactivity of PAA-modified nZVI (P-nZVI) and starch-modified nZVI (S-nZVI) were examined. Differing stability behavior and reactivity were observed for different SM-nZVI. It was found that the presence of Ca(2+) or HA altered surface chemistry of SM-nZVI, the particle-particle interaction and the particle-contaminant interaction, and hence influencing the stability behavior and reactivity of the particles.

13.
Chemosphere ; 144: 1682-9, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26519799

RESUMEN

Nanoscale zero-valent iron (NZVI) particles are usually modified with surface coating to mitigate the particle stability in water during the environmental application. However, the surface coating may not only influence the particle stabilization but also the particle cytotoxicity. In this study, we investigated the dual effects of carboxymethyl cellulose (CMC) on the colloidal stability and cytotoxicity of NZVI towards gram-negative Escherichia coli (E. coli) and discussed the interrelation between particle stability and cytotoxicity. The effect of CMC concentration, ionic strength (Ca(2+)) and aging treatment on the particle cytotoxicity were also examined. Specifically, the aqueous stability of NZVI suspensions with CMC ratio dose-dependently strengthened within 1 h. The inactivation of E. coli by bare NZVI was significant and concentration- and time-dependent. On the contrary, an increasing reduction in cytotoxicity of NZVI with CMC ratio increasing was observed, even though the particles became more dispersed. TEM analysis demonstrates the membrane disruption and the cellular internalization of nanoparticles after exposure of E. coli to NZVI. However, in the case of CMC-modified NZVI (CNZVI), the bacterial cell wall displays an outer shell of a layer of nanoparticles attached around the outer membrane, but the cell membrane was kept intact. The presence of Ca(2+) can either increase or decrease the cytotoxicity of NZVI and CNZVI, depending on the concentration. The aged NZVI and CNZVI particles did not seem to present obvious bactericidal effect due to the transformation of Fe(0) to the less toxic or non-toxic iron oxides, as indicated by the XRD analysis.


Asunto(s)
Carboximetilcelulosa de Sodio/toxicidad , Escherichia coli/efectos de los fármacos , Agua Subterránea/análisis , Hierro/toxicidad , Nanopartículas del Metal/toxicidad , Contaminantes Químicos del Agua/toxicidad , Carboximetilcelulosa de Sodio/química , Coloides/química , Electrólitos/química , Factores de Tiempo , Contaminantes Químicos del Agua/química
14.
J Hazard Mater ; 312: 234-242, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27037478

RESUMEN

To assess the long-term fate and the associated risks of nanoscale zero-valent iron (nZVI) used in the water remediation, it is essential to understand the chemical transformations during aging of nZVI in water. This study investigated the compositional and structural evolution of bare nZVI and carboxymethyl cellulose (CMC) coated nZVI in static water over a period of 90 days. Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy were used to characterize the corrosion products of nZVI and CMC-nZVI. Results show that both the structures and the compositions of the corrosion products change with the process of aging, but the coating of CMC could slow down the aging rate of nZVI (as indicated by the slower drop in Fe(0) intensity in XRD pattern). For the bare nZVI, magnetite (Fe3O4) and/or maghemite (γ-Fe2O3) are the dominant corrosion products after 90 days of aging. However, for the CMC-nZVI, the core-shell spheres collapses to acicular-shaped structures after aging with crystalline lepidocrocite (γ-FeOOH) as the primary end product. Moreover, more lepidocrocite present in the corrosion products of CMC-nZVI with higher loading of CMC, which reveals that the CMC coating could influence the transformation of iron oxides.

15.
Environ Pollut ; 211: 363-9, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26796746

RESUMEN

This study investigated the effect of fulvic acid (FA) on the colloidal stability and reactivity of nano zero-valent iron (nZVI) at pH 5, 7 and 9. The sedimentation behavior of nZVI differed at different pH. A biphasic model was used to describe the two time-dependent settling processes (i.e., a rapid settling followed by a slower settling) and the settling rates were calculated. Generally, the settling of nZVI was more significant at the point of zero charge (pHpzc), which could be varied in the presence of FA due to the adsorption of FA on the nZVI surface. More FA was adsorbed on the nZVI surface at pH 5-7 than pH 9, resulting in the varying sedimentation behavior of nZVI via influencing the electrostatic repulsion among particles. Moreover, it was found that there was a tradeoff between the stabilization and the reactivity of nZVI as affected by the presence of FA. When FA concentration was at a low level, the adsorption of FA on the nZVI surface could enhance the particle stabilization, and thus facilitating the Cr(VI) reduction by providing more available surface sites. However, when the FA concentrations were too high to occupy the active surface sites of nZVI, the Cr(VI) reduction could be decreased even though the FA enhanced the dispersion of nZVI particles. At pH 9, the FA improved the Cr(VI) reduction by nZVI. Given the adsorption of FA on the nZVI surface was insignificant and its effect on the settling behavior of nZVI particles was minimal, it was proposed that the FA formed soluble complexes with the produced Fe(III)/Cr(III) ions, and thus reducing the degree of passivation on the nZVI surface and facilitating the Cr(VI) reduction.


Asunto(s)
Benzopiranos/química , Hierro/química , Modelos Químicos , Adsorción , Cromo/análisis , Compuestos Férricos , Nanopartículas del Metal/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA