Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nature ; 613(7945): 656-661, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36653455

RESUMEN

Domain-wall nanoelectronics is considered to be a new paradigm for non-volatile memory and logic technologies in which domain walls, rather than domains, serve as an active element. Especially interesting are charged domain walls in ferroelectric structures, which have subnanometre thicknesses and exhibit non-trivial electronic and transport properties that are useful for various nanoelectronics applications1-3. The ability to deterministically create and manipulate charged domain walls is essential to realize their functional properties in electronic devices. Here we report a strategy for the controllable creation and manipulation of in-plane charged domain walls in BiFeO3 ferroelectric films a few nanometres thick. By using an in situ biasing technique within a scanning transmission electron microscope, an unconventional layer-by-layer switching mechanism is detected in which ferroelectric domain growth occurs in the direction parallel to an applied electric field. Based on atomically resolved electron energy-loss spectroscopy, in situ charge mapping by in-line electron holography and theoretical calculations, we show that oxygen vacancies accumulating at the charged domain walls are responsible for the domain-wall stability and motion. Voltage control of the in-plane domain-wall position within a BiFeO3 film gives rise to multiple non-volatile resistance states, thus demonstrating the key functional property of being a memristor a few unit cells thick. These results promote a better understanding of ferroelectric switching behaviour and provide a new strategy for creating unit-cell-scale devices.

2.
Phys Rev Lett ; 131(11): 116002, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37774302

RESUMEN

The extremely overdoped cuprates are generally considered to be Fermi liquid metals without exotic orders, whereas the underdoped cuprates harbor intertwined states. Contrary to this conventional wisdom, using Cu L_{3}-edge and O K-edge resonant x-ray scattering, we reveal a charge order (CO) correlation in overdoped La_{2-x}Sr_{x}CuO_{4} (0.35≤x≤0.6) beyond the superconducting dome. This CO has a periodicity of ∼6 lattice units with correlation lengths of ∼20 lattice units. It shows similar in-plane momentum and polarization dependence and dispersive excitations as the CO of underdoped cuprates, but its maximum intensity differs along the c direction and persists up to 300 K. This CO correlation cannot be explained by the Fermi surface instability and its origin remains to be understood. Our results suggest that CO is prevailing in the overdoped metallic regime and requires a reassessment of the picture of overdoped cuprates as weakly correlated Fermi liquids.

3.
Phys Rev Lett ; 127(8): 086804, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34477422

RESUMEN

Recently, two-dimensional superconductivity was discovered at the oxide interface between KTaO_{3} and LaAlO_{3} (or EuO), whose superconducting transition temperature T_{c} is up to 2.2 K and exhibits strong crystalline-orientation dependence. However, the origin of the interfacial electron gas, which becomes superconducting at low temperatures, remains elusive. Taking the LaAlO_{3}/KTaO_{3}(111) interface as an example, we have demonstrated that there exists a critical LaAlO_{3} thickness of ∼3 nm. Namely, a thinner LaAlO_{3} film will give rise to an insulating but not conducting (or superconducting) interface. By in situ transport measurements during growth, we have also revealed that the critical thickness can be suppressed if exposure to oxygen is avoided. These observations, together with other control experiments, suggest strongly that the origination of the electron gas is dominated by the electron transfer that is from oxygen vacancies in the LaAlO_{3} film to the KTaO_{3} substrate.

4.
Phys Rev Lett ; 126(2): 026802, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33512194

RESUMEN

We report on the observation of a T_{c}∼0.9 K superconductivity at the interface between LaAlO_{3} film and the 5d transition metal oxide KTaO_{3}(110) single crystal. The interface shows a large anisotropy of the upper critical field, and its superconducting transition is consistent with a Berezinskii-Kosterlitz-Thouless transition. Both facts suggest that the superconductivity is two-dimensional (2D) in nature. The carrier density measured at 5 K is ∼7×10^{13} cm^{-2}. The superconducting layer thickness and coherence length are estimated to be ∼8 and ∼30 nm, respectively. Our result provides a new platform for the study of 2D superconductivity at oxide interfaces.

5.
Nat Mater ; 16(12): 1203-1208, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28920939

RESUMEN

Electrostatic fields tune the ground state of interfaces between complex oxide materials. Electronic properties, such as conductivity and superconductivity, can be tuned and then used to create and control circuit elements and gate-defined devices. Here we show that naturally occurring twin boundaries, with properties that are different from their surrounding bulk, can tune the LaAlO3/SrTiO3 interface 2DEG at the nanoscale. In particular, SrTiO3 domain boundaries have the unusual distinction of remaining highly mobile down to low temperatures, and were recently suggested to be polar. Here we apply localized pressure to an individual SrTiO3 twin boundary and detect a change in LaAlO3/SrTiO3 interface current distribution. Our data directly confirm the existence of polarity at the twin boundaries, and demonstrate that they can serve as effective tunable gates. As the location of SrTiO3 domain walls can be controlled using external field stimuli, our findings suggest a novel approach to manipulate SrTiO3-based devices on the nanoscale.

6.
Nano Lett ; 16(10): 6130-6136, 2016 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-27605459

RESUMEN

Carrier density and disorder are two crucial parameters that control the properties of correlated two-dimensional electron systems. In order to disentangle their individual contributions to quantum phenomena, independent tuning of these two parameters is required. Here, by utilizing a hybrid liquid/solid electric dual-gate geometry acting on the conducting LaAlO3/SrTiO3 heterointerface, we obtain an additional degree of freedom to strongly modify the electron confinement profile and thus the strength of interfacial scattering, independent from the carrier density. A dual-gate controlled nonlinear Hall effect is a direct manifestation of this profile, which can be quantitatively understood by a Poisson-Schrödinger sub-band model. In particular, the large nonlinear dielectric response of SrTiO3 enables a very wide range of tunable density and disorder, far beyond that for conventional semiconductors. Our study provides a broad framework for understanding various reported phenomena at the LaAlO3/SrTiO3 interface.

7.
J Am Chem Soc ; 136(49): 17284-91, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25407608

RESUMEN

Graphene nanoribbons (GNRs) are promising building blocks for high-performance electronics due to their high electron mobility and dimensionality-induced bandgap. Despite many past efforts, direct synthesis of GNRs with controlled dimensions and scalability remains challenging. Here we report the scalable synthesis of GNRs using electrospun polymer nanofiber templates. Palladium-incorporated poly(4-vinylphenol) nanofibers were prepared by electrospinning with controlled diameter and orientation. Highly graphitized GNRs as narrow as 10 nm were then synthesized from these templates by chemical vapor deposition. A transport gap can be observed in 30 nm-wide GNRs, enabling them to function as field-effect transistors at room temperature. Our results represent the first success on the scalable synthesis of highly graphitized GNRs from polymer templates. Furthermore, the generality of this method allows various polymers to be explored, which will lead to understanding of growth mechanism and rational control over crystallinity, feature size and bandgap to enable a new pathway for graphene electronics.

8.
Nat Mater ; 12(12): 1091-5, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24013791

RESUMEN

The ability to control materials properties through interface engineering is demonstrated by the appearance of conductivity at the interface of certain insulators, most famously the {001} interface of the band insulators LaAlO3 and TiO2-terminated SrTiO3 (STO; refs 1, 2). Transport and other measurements in this system show a plethora of diverse physical phenomena. To better understand the interface conductivity, we used scanning superconducting quantum interference device microscopy to image the magnetic field locally generated by current in an interface. At low temperature, we found that the current flowed in conductive narrow paths oriented along the crystallographic axes, embedded in a less conductive background. The configuration of these paths changed on thermal cycling above the STO cubic-to-tetragonal structural transition temperature, implying that the local conductivity is strongly modified by the STO tetragonal domain structure. The interplay between substrate domains and the interface provides an additional mechanism for understanding and controlling the behaviour of heterostructures.

9.
Nano Lett ; 12(8): 4055-9, 2012 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-22769056

RESUMEN

Manipulation of magnetism is a longstanding goal of research in exotic materials. In this work, we demonstrate that the small ferromagnetic patches in LaAlO(3)/SrTiO(3) heterostructures can be dramatically changed by in situ contact of a scanning probe. Our results provide a platform for manipulation of small magnets through either a strong magneto-elastic coupling or sensitivity to surface modification. The ability to locally control magnetism is particularly interesting due to the presence of superconductivity with strong spin-orbit coupling in LaAlO(3)/SrTiO(3).

10.
J Phys Condens Matter ; 34(44)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36007513

RESUMEN

The recent discovery of superconductivity at EuO (or LaAlO3)/KTaO3interfaces has attracted considerable research interest. However, an extensive study on growth of these interfaces is still lacking. In this work, we have fabricated LaAlO3/KTaO3(111) interfaces by growing LaAlO3thin films on KTaO3(111) single-crystalline substrates by pulsed laser deposition. We investigated the effects of growth temperature, oxygen pressure, laser fluence, and postannealing on transport properties. We found that all these key growth parameters show important effects on transport properties, and discussed their possible mechanisms. Our present study provides useful knowledge to further optimize these interfaces.

11.
Sci Adv ; 8(22): eabn4273, 2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35658041

RESUMEN

The recent discovery of superconductivity at the interfaces between KTaO3 and EuO (or LaAlO3) gives birth to the second generation of oxide interface superconductors. This superconductivity exhibits a strong dependence on the surface plane of KTaO3, in contrast to the seminal LaAlO3/SrTiO3 interface, and the superconducting transition temperature Tc is enhanced by one order of magnitude. For understanding its nature, a crucial issue arises: Is the formation of oxide interfaces indispensable for the occurrence of superconductivity? Exploiting ionic liquid (IL) gating, we are successful in achieving superconductivity at KTaO3(111) and KTaO3(110) surfaces with Tc up to 2.0 and 1.0 K, respectively. This oxide-IL interface superconductivity provides a clear evidence that the essential physics of KTaO3 interface superconductivity lies in the KTaO3 surfaces doped with electrons. Moreover, the controllability with IL technique paves the way for studying the intrinsic superconductivity in KTaO3.

12.
Nano Lett ; 10(7): 2588-91, 2010 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-20518539

RESUMEN

Biased conducting-tip atomic force microscopy (AFM) has been shown to write and erase nanoscale metallic lines at the LaAlO(3)/SrTiO(3) interface. Using various AFM modes, we show the mechanism of conductivity switching is the writing of surface charge. These charges are stably deposited on a wide range of LaAlO(3) thicknesses, including bulk crystals. A strong asymmetry with writing polarity was found for 1 and 2 unit cells of LaAlO(3), providing experimental evidence for a theoretically predicted built-in potential.

13.
Science ; 372(6543): 721-724, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33986177

RESUMEN

The oxide interface between LaAlO3 and KTaO3(111) can harbor a superconducting state. We report that by applying a gate voltage (V G) across KTaO3, the interface can be continuously tuned from superconducting into insulating states, yielding a dome-shaped T c-V G dependence, where T c is the transition temperature. The electric gating has only a minor effect on carrier density but a strong one on mobility. We interpret the tuning of mobility in terms of change in the spatial profile of the carriers in the interface and hence, effective disorder. As the temperature is decreased, the resistance saturates at the lowest temperature on both superconducting and insulating sides, suggesting the emergence of a quantum metallic state associated with a failed superconductor and/or fragile insulator.

14.
Nat Commun ; 12(1): 3311, 2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34083533

RESUMEN

In systems near phase transitions, macroscopic properties often follow algebraic scaling laws, determined by the dimensionality and the underlying symmetries of the system. The emergence of such universal scaling implies that microscopic details are irrelevant. Here, we locally investigate the scaling properties of the metal-insulator transition at the LaAlO3/SrTiO3 interface. We show that, by changing the dimensionality and the symmetries of the electronic system, coupling between structural and electronic properties prevents the universal behavior near the transition. By imaging the current flow in the system, we reveal that structural domain boundaries modify the filamentary flow close to the transition point, preventing a fractal with the expected universal dimension from forming.

15.
J Phys Condens Matter ; 33(15)2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33498026

RESUMEN

We report growth, electronic structure and superconductivity of ultrathin epitaxial CoSi2films on Si (111). At low coverages, preferred islands with 2, 5 and 6 monolayers height develop, which agrees well with the surface energy calculation. We observe clear quantum well states as a result of electronic confinement and their dispersion agrees well with density functional theory calculations, indicating weak correlation effect despite strong contributions from Co 3delectrons.Ex situtransport measurements show that superconductivity persists down to at least 10 monolayers, with reducedTcbut largely enhanced upper critical field. Our study opens up the opportunity to study the interplay between quantum confinement, interfacial symmetry breaking and superconductivity in an epitaxial silicide film, which is technologically relevant in microelectronics.

16.
Nat Commun ; 12(1): 5926, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34635672

RESUMEN

Enormous enhancement of superconducting pairing temperature (Tg) to 65 K in FeSe/SrTiO3 has made it a spotlight. Despite the effort of interfacial engineering, FeSe interfaced with TiOx remains the unique case in hosting high Tg, hindering a decisive understanding on the general mechanism and ways to further improving Tg. Here we constructed a new high-Tg interface, single-layer FeSe interfaced with FeOx-terminated LaFeO3. Large superconducting gap and diamagnetic response evidence that the superconducting pairing can emerge near 80 K, highest amongst all-known interfacial superconductors. Combining various techniques, we reveal interfacial charge transfer and strong interfacial electron-phonon coupling (EPC) in FeSe/LaFeO3, showing that the cooperative pairing mechanism works beyond FeSe-TiOx. Intriguingly, the stronger interfacial EPC than that in FeSe/SrTiO3 is likely induced by the stronger interfacial bonding in FeSe/LaFeO3, and can explain the higher Tg according to recent theoretical calculations, pointing out a workable route in designing new interfaces to achieve higher Tg.

17.
Nanotechnology ; 20(42): 425603, 2009 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-19779238

RESUMEN

Controlling the growth orientation of semiconductor nanowire arrays is of vital importance for their applications in the fields of nanodevices. In the present work, hexagonal CdSe nanowire arrays with various preferential growth orientations have been successfully yielded by employing the electrodeposition technique using porous alumina as templates (PATs). We demonstrate by experimental and theoretical efforts that the growth orientation of the CdSe nanowires can be effectively manipulated by varying either the nanopore diameter of the PATs or the deposited current density, which has significant effects on the optical properties of the CdSe nanowires. The present study provides an alternative approach to tuning the growth direction of electrodeposited nanowires and thus is of importance for the fabrication of nanodevices with controlled functional properties.

18.
J Phys Condens Matter ; 31(50): 505002, 2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31499485

RESUMEN

Numerous studies have shown that oxygen vacancies play an important role on the formation of two-dimensional electron gas (2DEG) at SrTiO3-based heterointerfaces. Previously, it is widely believed that the main mechanism is that the oxygen vacancies in SrTiO3 directly contribute electrons to the 2DEG. Here, we performed transport measurements during the creation of 2DEG for depositing amorphous LaAlO3 on SrTiO3 substrates and related heterostructures. Our result suggests that, unlike the previous viewpoint, in this kind of 2DEG the determinant mechanism is the electron transfer from the oxygen vacancies in the film grown on SrTiO3, rather than the oxygen vacancies in SrTiO3 themselves. This effect is so striking that an amorphous film of less than 10% monolayer coverage on SrTiO3, or equivalently 0.04 nm, can already generate a highly conducting 2DEG. The present result may have a general implication and provide a possible way to understand the long-standing debate on the origin of 2DEG at SrTiO3-based heterointerfaces.

19.
Nat Commun ; 10(1): 4026, 2019 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-31492862

RESUMEN

The single-crystal SrTiO3 (001) has two different surface terminations, TiO2 and SrO. One most remarkable observation in previous studies is that only the heterointerfaces with TiO2-terminated SrTiO3, which usually combines with polar oxides such as LaAlO3, host an electron gas. Here we show that a robust electron gas can be generated between a non-polar oxide, CaHfO3, and SrTiO3 (001) with either termination. Unlike the well-known electron gas of LaAlO3/SrTiO3, the present one of CaHfO3/SrTiO3 essentially has no critical thickness of CaHfO3, can survive a long-time oxygen annealing at high temperature, and its transport properties are stable under exposure to water and other polar solvents. By electrostatic gating through CaHfO3, field-effect devices are demonstrated using CaHfO3/SrTiO3 heterointerfaces with both terminations. These results show that the electron gas reported in the present study is unique and promising for applications in oxide electronics.

20.
Nat Commun ; 9(1): 4008, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30275443

RESUMEN

Quantum ground states that arise at atomically controlled oxide interfaces provide an opportunity to address key questions in condensed matter physics, including the nature of two-dimensional metallic behaviour often observed adjacent to superconductivity. At the superconducting LaAlO3/SrTiO3 interface, a metallic ground state emerges upon the collapse of superconductivity with field-effect gating and is accompanied with a pseudogap. Here we utilize independent control of carrier density and disorder of the interfacial superconductor using dual electrostatic gates, which enables the comprehensive examination of the electronic phase diagram approaching zero temperature. We find that the pseudogap corresponds to precursor pairing, and the onset of long-range phase coherence forms a two-dimensional superconducting dome as a function of the dual-gate voltages. The gate-tuned superconductor-metal transitions are driven by macroscopic phase fluctuations of Josephson coupled superconducting puddles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA