Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 17(4)2017 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-28358344

RESUMEN

Carbon fiber microelectrode (CFME) has been extensively applied in the biosensor and chemical sensor domains. In order to improve the electrochemical activity and sensitivity of the CFME, a new CFME modified with carbon nanotubes (CNTs), denoted as CNTs/CFME, was fabricated and investigated. First, carbon fiber (CF) monofilaments grafted with CNTs (simplified as CNTs/CFs) were fabricated in two key steps: (i) nickel electroless plating, followed by (ii) chemical vapor deposition (CVD). Second, a single CNTs/CF monofilament was selected and encapsulated into a CNTs/CFME with a simple packaging method. The morphologies of as-prepared CNTs/CFs were characterized by scanning electron microscopy. The electrochemical properties of CNTs/CFMEs were measured in potassium ferrocyanide solution (K4Fe(CN)6), by using a cyclic voltammetry (CV) and a chronoamperometry method. Compared with a bare CFME, a CNTs/CFME showed better CV curves with a higher distinguishable redox peak and response current; the higher the CNT content was, the better the CV curves were. Because the as-grown CNTs significantly enhanced the effective electrode area of CNTs/CFME, the contact area between the electrode and reactant was enlarged, further increasing the electrocatalytic active site density. Furthermore, the modified microelectrode displayed almost the same electrochemical behavior after 104 days, exhibiting remarkable stability and outstanding reproducibility.

2.
Research (Wash D C) ; 6: 0157, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37292515

RESUMEN

Flexible full-textile pressure sensor is able to integrate with clothing directly, which has drawn extensive attention from scholars recently. But the realization of flexible full-textile pressure sensor with high sensitivity, wide detection range, and long working life remains challenge. Complex recognition tasks necessitate intricate sensor arrays that require extensive data processing and are susceptible to damage. The human skin is capable of interpreting tactile signals, such as sliding, by encoding pressure changes and performing complex perceptual tasks. Inspired by the skin, we have developed a simple dip-and-dry approach to fabricate a full-textile pressure sensor with signal transmission layers, protective layers, and sensing layers. The sensor achieves high sensitivity (2.16 kPa-1), ultrawide detection range (0 to 155.485 kPa), impressive mechanical stability of 1 million loading/unloading cycles without fatigue, and low material cost. The signal transmission layers that collect local signals enable real-world complicated task recognition through one single sensor. We developed an artificial Internet of Things system utilizing a single sensor, which successfully achieved high accuracy in 4 tasks, including handwriting digit recognition and human activity recognition. The results demonstrate that skin-inspired full-textile sensor paves a promising route toward the development of electronic textiles with important potential in real-world applications, including human-machine interaction and human activity detection.

3.
ACS Appl Mater Interfaces ; 15(37): 43550-43562, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37672350

RESUMEN

The high temperature induced by surgical electrodes is highly susceptible to severe surface adhesion and thermal damage to adjacent tissues, which is a major challenge in improving the quality of electrosurgery. Herein, we reported a coupled electrode with micro/nano hierarchical structures fabricated by depositing nanoscale hafnium oxide (HfO2) coatings on bionic microstructures (BMs) via laser texturing, acid washing, and atomic layer deposition (ALD) techniques. The synergistic effect of HfO2 coatings and BMs greatly enhanced the hemophobicity of the electrode with a blood contact angle of 162.15 ± 3.16°. Furthermore, the coupled surface was proven to have excellent antiadhesive properties to blood when heated above 100 °C, and the underlying mechanism was discussed. Further experiments showed that the coupled electrode had significant advantages in reducing cutting forces, thermal damage, and tissue adhesion mass. Moreover, the antibacterial rates against Escherichia coli and Staphylococcus aureus were 97.2% and 97.9%, respectively. In addition, the noncytotoxicity levels of HfO2 coatings were verified by cell apoptosis and cycle assays, indirectly endowing the coupled electrode with biocompatibility. Overall, the coupled electrode was shown to have broad potential for application in the field of electrosurgery, and this work could provide new insights into antiadhesion properties under high-temperature conditions.


Asunto(s)
Biónica , Electrocirugia , Antibacterianos/farmacología , Apoptosis , Electrodos , Escherichia coli
4.
ACS Appl Mater Interfaces ; 14(1): 1315-1325, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34931519

RESUMEN

Sensitivity and strain range are two mutually exclusive features of strain sensors, where a significant improvement in flexibility is usually accompanied by a reduction in sensitivity. The skin of a human fingertip, due to its undulating fingerprint pattern, can easily detect environmental signals and enhances sensitivity without losing elasticity. Inspired by this characteristic, laser-induced graphene (LIG) with a fingerprint structure is prepared in one step on a polyimide (PI) film and transferred into an Ecoflex substrate to assemble resistive strain sensors. Experimentally, the fingerprint-inspired strain sensor exhibits a superfast response time (∼70 ms), balanced sensitivity and strain range (a gauge factor of 191.55 in the 42-50% strain range), and good reliability (>1500 cycles). Self-organized microcracks, initiated in weak mechanical areas, cause prominent resistance changes during reconnection/disconnection but irreversibly fail after excessive stretching. The robust function of fingerprint-inspired sensors is further demonstrated by real-time monitoring of tiny pulses, large body movements, gestures, and voice recognition.


Asunto(s)
Materiales Biocompatibles/química , Grafito/química , Rayos Láser , Dispositivos Electrónicos Vestibles , Humanos , Ensayo de Materiales
5.
ACS Appl Mater Interfaces ; 12(43): 49030-49041, 2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33073568

RESUMEN

In the 5G era, for portable electronics to operate at high performance and low power levels, the incorporation of superior electromagnetic interference (EMI) shielding materials within the packages is of critical importance. A desirable wearable EMI shielding material is one that is lightweight, structurally flexible, air-permeable, and able to self-clean. To this end, a bioinspired electroless silver plating strategy and a one-step electrodeposition method are utilized to prepare an EMI shielding fabric (CEF-NF/PDA/Ag/50-30) that possesses these desirable properties. Porous CEF-NF mats with a spatially distributed silver coating create efficient pathways for electron movement and enable a remarkable conductivity of 370 S mm-1. When tested within a frequency range of 8.2-12.4 GHz, this highly conductive fabric not only achieves an EMI shielding effectiveness (EMI SE of 101.27 dB at 5028 dB cm2 g-1) comparable to a very thin and light metal but also retains the unique properties of fabrics-being light, structurally flexible, and breathable. In addition, it exhibits a high contact angle (CA) of 156.4° with reversible surface wettability. After having been subjected to 1000 cycles of bending, the performance of the fabric only decreases minimally. This strategy potentially provides a novel way to design and manufacture an easily integrated EMI shielding fabric for flexible wearable devices.

6.
ACS Appl Mater Interfaces ; 12(40): 45541-45548, 2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-32909743

RESUMEN

Miniaturized and flexible power resources such as supercapacitors with resistance of high voltage play a critical role as potential energy storage devices for implantable and portable electronics because of their convenience, high power density, and long-term stability. Herein, we propose a novel strategy for the fabrication of high voltage microsupercapacitors (HVMSCs) employing porous laser-induced graphene (from polyimide films with alkalization treatment) followed by laser carving of the polyvinyl alcohol/H3PO4 gel electrolyte to realize a series assembly of supercapacitors and significantly increase the voltage resistance. The results elucidated that HVMSCs (3 mm × 21.15 mm) exhibited excellent capacitive performance including exceptional potential window (10 V), high areal capacitance (244 µF/cm2), acceptable power density (274 µW/cm2) and energy density (3.22 µW h/cm2), good electrochemical stability and flexibility at different bending status (0, 45, 90, 135, and 180°), as well as impressive voltage durability more than 5 V in smaller scale (0.5 mm × 5.5 mm). As such, the HVMSCs have great potential to be integrated with microcircuit modules for the next-generation self-powered systems and storage electronic devices in high voltage applications.

7.
Nanoscale ; 11(28): 13587-13599, 2019 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-31290898

RESUMEN

Highly conductive carbon-based fibrous composites have become one of the most sought-after components in the field of electromagnetic interference (EMI) shielding due to their excellent comprehensive performance. In this work, a flexible nonwoven fabric consisting of carbon fibers (CFs) and polypropylene/polyethylene (PP/PE) core/sheath bicomponent fibers (ESFs), known as CEF-NF, is introduced into the graphene (GE)/poly(vinylidene fluoride) (PVDF) nanocomposite obtained by a solution casting method to fabricate a CEF-NF/GE/PVDF film. Disparate microstructures can be clearly observed in CEF-NF/GE/PVDF films with different graphene contents. Thanks to an internal porous network structure formed when the graphene content is high, this film exhibits better electrical conductivity. In the frequency range of 30-1500 MHz, this film can achieve a significantly high EMI shielding effectiveness (EMI-SE) value of about 48.5 dB at tiny thickness and density (1731.40 dB cm2 g-1), which are far better than many competitive materials. Moreover, this film exhibits adequate tensile strength and excellent flexibility, as the film's structural form can be retained even after multiple folding processes. In addition, by combining two-dimensional (2D) graphene and one-dimensional (1D) CF, the CEF-NF/GE/PVDF film achieves a remarkable in-plane thermal conductivity of 25.702 W m-1 K-1, making it an exceptional heat conductor. In summary, our results demonstrate that CEF-NF/GE/PVDF film is an excellent EMI shielding material that is light weight, highly flexible, and mechanically robust with outstanding thermal conductivity, which positions it superbly for applications in next-generation commercial portable electronics.

8.
Nat Commun ; 10(1): 3112, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31308363

RESUMEN

Ultrathin transition metal carbides with high capacity, high surface area, and high conductivity are a promising family of materials for applications from energy storage to catalysis. However, large-scale, cost-effective, and precursor-free methods to prepare ultrathin carbides are lacking. Here, we demonstrate a direct pattern method to manufacture ultrathin carbides (MoCx, WCx, and CoCx) on versatile substrates using a CO2 laser. The laser-sculptured polycrystalline carbides (macroporous, ~10-20 nm wall thickness, ~10 nm crystallinity) show high energy storage capability, hierarchical porous structure, and higher thermal resilience than MXenes and other laser-ablated carbon materials. A flexible supercapacitor made of MoCx demonstrates a wide temperature range (-50 to 300 °C). Furthermore, the sculptured microstructures endow the carbide network with enhanced visible light absorption, providing high solar energy harvesting efficiency (~72 %) for steam generation. The laser-based, scalable, resilient, and low-cost manufacturing process presents an approach for construction of carbides and their subsequent applications.

9.
Materials (Basel) ; 11(8)2018 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-30072616

RESUMEN

In this work, we propose a facile method for manufacturing a three-dimensional copper foil-powder sintering current collector (CFSCC) for a silicon-based anode lithium-ion battery. We found that the CFSCC is suitable as a silicon-based paste electrode, and the paste-like electrodes are commonly used in industrial production. Compared with flat current collectors, the CFSCC better constrained the silicon volume change during the charging-discharging process. The capacitance of electrodes with CFSCC remained as high as 92.2% of its second cycle after 40 cycles, whereas that of electrodes with a flat current collector only remained at 50%.

10.
ACS Appl Mater Interfaces ; 10(31): 26357-26364, 2018 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-30004667

RESUMEN

High-voltage energy-storage devices are quite commonly needed for robots and dielectric elastomers. This paper presents a flexible high-voltage microsupercapacitor (MSC) with a planar in-series architecture for the first time based on laser-induced graphene. The high-voltage devices are capable of supplying output voltages ranging from a few to thousands of volts. The measured capacitances for the 1, 3, and 6 V MSCs were 60.5, 20.7, and 10.0 µF, respectively, under an applied current of 1.0 µA. After the 5000-cycle charge-discharge test, the 6 V MSC retained about 97.8% of the initial capacitance. It also was recorded that the all-solid-state 209 V MSC could achieve a high capacitance of 0.43 µF at a low applied current of 0.2 µA and a capacitance of 0.18 µF even at a high applied current of 5.0 µA. We further demonstrate the robust function of our flexible high-voltage MSCs by using them to power a piezoresistive microsensor (6 V) and a walking robot (>2000 V). Considering the simple, direct, and cost-effective fabrication method of our laser-fabricated flexible high-voltage MSCs, this work paves the way and lays the foundation for high-voltage energy-storage devices.

11.
Sci Rep ; 7(1): 14324, 2017 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-29085036

RESUMEN

Flexible power sources with load bearing capability are attractive for modern wearable electronics. Here, free-standing supercapacitor fabrics that can store high electrical energy and sustain large mechanical loads are directly woven to be compatible with flexible systems. The prototype with reduced package weight/volume provides an impressive energy density of 2.58 mWh g-1 or 3.6 mWh cm-3, high tensile strength of over 1000 MPa, and bearable pressure of over 100 MPa. The nanoporous thread electrodes are prepared by the activation of commercial carbon fibers to have three-orders of magnitude increase in the specific surface area and 86% retention of the original strength. The novel device configuration woven by solid electrolyte-coated threads shows excellent flexibility and stability during repeated mechanical bending tests. A supercapacitor watchstrap is used to power a liquid crystal display as an example of load-bearing power sources with various form-factor designs for wearable electronics.

12.
ACS Appl Mater Interfaces ; 9(45): 39391-39398, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29035032

RESUMEN

Fiber-based supercapacitors have attracted significant interests because of their potential applications in wearable electronics. Although much progress has been made in recent years, the energy and power densities, mechanical strength, and flexibility of such devices are still in need of improvement for practical applications. Here, we demonstrate an ultrathin microcoaxial fiber supercapacitor (µCFSC) with high energy and power densities (2.7 mW h/cm3 and 13 W/cm3), as well as excellent mechanical properties. The prototype with the smallest reported overall diameter (∼13 µm) is fabricated by successive coating of functional layers onto a single micro-carbon-fiber via a scalable process. Combining the simulation results via the electrochemical model, we attribute the high performance to the well-controlled thin coatings that make full use of the electrode materials and minimize the ion transport path between electrodes. Moreover, the µCFSC features high bending flexibility and large tensile strength (more than 1 GPa), which make it promising as a building block for various flexible energy storage applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA