Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
FASEB J ; 28(7): 3146-58, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24723692

RESUMEN

Recent evidence suggests that specific extracellular α-synuclein (α-syn) strains are implicated in the progression of Parkinson's disease (PD) pathology. It is plausible that deregulation in the normal processing of secreted α-syn may be a causative risk factor for PD. To date, the degradation mechanisms involved have received very little attention. Here, we sought to investigate factors that regulate extracellular α-syn levels. We show, for the first time, that cell-secreted α-syn forms are resistant to direct proteolysis by kallikrein-related peptidase 6 (KLK6), an extracellular enzyme known to cleave recombinant α-syn. This differential susceptibility appears to be partially due to the association of secreted α-syn with lipids. We further provide evidence that secreted α-syn can be cleaved by KLK6 indirectly through activation of a secreted metalloprotease, suggestive of the involvement of a proteolytic cascade in the catabolism of secreted α-syn. Our results clearly suggest that physiological modifications affect the biochemical behavior of secreted α-syn and provide novel insights into mechanisms and potential targets for therapeutic interventions.-Ximerakis, M., Pampalakis, G., Roumeliotis, T. I., Sykioti, V.-S., Garbis, S. D., Stefanis, L., Sotiropoulou, G., Vekrellis, K. Resistance of naturally secreted α-synuclein to proteolysis.


Asunto(s)
Proteolisis , alfa-Sinucleína/metabolismo , Línea Celular , Humanos , Calicreínas/metabolismo , Metaloproteasas/metabolismo
2.
Nat Aging ; 3(3): 327-345, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-37118429

RESUMEN

Aging is a complex process involving transcriptomic changes associated with deterioration across multiple tissues and organs, including the brain. Recent studies using heterochronic parabiosis have shown that various aspects of aging-associated decline are modifiable or even reversible. To better understand how this occurs, we performed single-cell transcriptomic profiling of young and old mouse brains after parabiosis. For each cell type, we cataloged alterations in gene expression, molecular pathways, transcriptional networks, ligand-receptor interactions and senescence status. Our analyses identified gene signatures, demonstrating that heterochronic parabiosis regulates several hallmarks of aging in a cell-type-specific manner. Brain endothelial cells were found to be especially malleable to this intervention, exhibiting dynamic transcriptional changes that affect vascular structure and function. These findings suggest new strategies for slowing deterioration and driving regeneration in the aging brain through approaches that do not rely on disease-specific mechanisms or actions of individual circulating factors.


Asunto(s)
Células Endoteliales , Transcriptoma , Animales , Ratones , Transcriptoma/genética , Envejecimiento/genética , Parabiosis , Encéfalo
3.
Cell Rep ; 29(4): 932-945.e7, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31644914

RESUMEN

Local cues in the adult neurogenic niches dynamically regulate homeostasis in neural stem cells, whereas their identity and associated molecular mechanisms remain poorly understood. Here, we show that corticotropin-releasing hormone (CRH), the major mediator of mammalian stress response and a key neuromodulator in the adult brain, is necessary for hippocampal neural stem cell (hiNSC) activity under physiological conditions. In particular, we demonstrate functionality of the CRH/CRH receptor (CRHR) system in mouse hiNSCs and conserved expression in humans. Most important, we show that genetic deficiency of CRH impairs hippocampal neurogenesis, affects spatial memory, and compromises hiNSCs' responsiveness to environmental stimuli. These deficits have been partially restored by virus-mediated CRH expression. Additionally, we provide evidence that local disruption of the CRH/CRHR system reduces neurogenesis, while exposure of adult hiNSCs to CRH promotes neurogenic activity via BMP4 suppression. Our findings suggest a critical role of CRH in adult neurogenesis, independently of its stress-related systemic function.


Asunto(s)
Hormona Liberadora de Corticotropina/metabolismo , Hipocampo/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis , Animales , Línea Celular , Células Cultivadas , Hormona Liberadora de Corticotropina/genética , Hipocampo/citología , Hipocampo/fisiología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Células-Madre Neurales/citología , Receptores de Hormona Liberadora de Corticotropina/genética , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Memoria Espacial
4.
Nat Neurosci ; 22(10): 1696-1708, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31551601

RESUMEN

The mammalian brain is complex, with multiple cell types performing a variety of diverse functions, but exactly how each cell type is affected in aging remains largely unknown. Here we performed a single-cell transcriptomic analysis of young and old mouse brains. We provide comprehensive datasets of aging-related genes, pathways and ligand-receptor interactions in nearly all brain cell types. Our analysis identified gene signatures that vary in a coordinated manner across cell types and gene sets that are regulated in a cell-type specific manner, even at times in opposite directions. These data reveal that aging, rather than inducing a universal program, drives a distinct transcriptional course in each cell population, and they highlight key molecular processes, including ribosome biogenesis, underlying brain aging. Overall, these large-scale datasets (accessible online at https://portals.broadinstitute.org/single_cell/study/aging-mouse-brain ) provide a resource for the neuroscience community that will facilitate additional discoveries directed towards understanding and modifying the aging process.


Asunto(s)
Envejecimiento/genética , Encéfalo/crecimiento & desarrollo , Neuronas/fisiología , Análisis de la Célula Individual , Transcriptoma/genética , Animales , Encéfalo/citología , Comunicación Celular/genética , Linaje de la Célula/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Ratones , Ratones Endogámicos C57BL , Ribosomas/genética
5.
Oncotarget ; 8(9): 14502-14515, 2017 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-27845893

RESUMEN

KLK6 is a serine protease highly expressed in the nervous system. In synucleinopathies, including Parkinson disease, the levels of KLK6 inversely correlate with α-synuclein in CSF. Recently, we suggested that recombinant KLK6 mediates the degradation of extracellular α-synuclein directly and via a proteolytic cascade that involves unidentified metalloproteinase(s). Here, we show that recombinant and naturally secreted KLK6 can readily cleave α-synuclein fibrils that have the potential for cell-to-cell propagation in "a prion-like mechanism". Importantly, KLK6-deficient primary cortical neurons have increased ability for α-synuclein fibril uptake. We also demonstrate that KLK6 activates proMMP2, which in turn can cleave α-synuclein. The repertoire of proteases activated by KLK6 in a neuronal environment was analyzed by degradomic profiling, which also identified ADAMTS19 and showed that KLK6 has a limited number of substrates indicating specific biological functions such as the regulation of α-synuclein turnover. We generated adenoviral vectors for KLK6 delivery and demonstrated that the levels of extracellular α-synuclein can be reduced by neuronally secreted KLK6. Our findings open the possibility to exploit KLK6 as a novel therapeutic target for Parkinson disease and other synucleinopathies.


Asunto(s)
Espacio Extracelular/metabolismo , Calicreínas/fisiología , Neuronas/metabolismo , Proteínas Quinasas/metabolismo , alfa-Sinucleína/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/citología , Proteolisis
6.
Exp Neurobiol ; 23(4): 324-36, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25548532

RESUMEN

Converging lines of evidence suggest that cell-to-cell transmission and the self-propagation of pathogenic amyloidogenic proteins play a central role in the initiation and the progression of several neurodegenerative disorders. This "prion-like" hypothesis has been recently reported for α-synuclein, a presynaptic protein implicated in the pathogenesis of Parkinson's disease (PD) and related disorders. This review summarizes recent findings on α-synuclein prion-like propagation, focusing on its transmission, seeding and degradation and discusses some key questions that remain to be explored. Understanding how α-synuclein exits cells and propagates from one brain region to another will lead to the development of new therapeutic strategies for the treatment of PD, aiming at slowing or stopping the disease progression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA