Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(25): 17034-17042, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37337904

RESUMEN

A fully continuous geometric center symmetric cross-shaped graphene structure is proposed. Each cross-shaped graphene unit cell is composed of a central graphene region and four completely symmetric graphene chips, where each graphene chip acts as both bright and dark modes simultaneously, while the central graphene region always acts as the bright mode. Through destructive interference, the structure can realize the single plasmon-induced transparency (PIT) phenomenon, where the optical responses are independent of the polarization direction of the linearly polarized light due to the symmetry of the structure. Combining numerical simulations with coupled mode theory (CMT) calculations, the modulation of the Fermi energy of graphene to the optical spectra is investigated. The results show that the spectra are blue shifted as the Fermi energy increases, and the absorption of the two absorption peaks is basically equal (48.7%) when the Fermi energy increases to 0.667 eV. Theoretical calculations show that the slow light performance of the designed structure enhances with the increase of Fermi energy, where the maximum group index is high up to 424.73. Furthermore, it is worth noting that the electrode can be made very small due to its fully continuous structure. This work provides guidance in terms of terahertz modulators, tunable absorbers, and slow light devices.

2.
Opt Express ; 30(9): 14817-14827, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35473217

RESUMEN

Enhancing the light-matter interaction of two-dimensional materials in the visible and near-infrared regions is highly required in optical devices. In this paper, the optical bound states in the continuum (BICs) that can enhance the interaction between light and matter are observed in the grating-graphene-Bragg mirror structure. The system can generate a dual-band perfect absorption spectrum contributed by guided-mode resonance (GMR) and Tamm plasmon polarition (TPP) modes. The optical switch can also be obtained by switching the TE-TM wave. The dual-band absorption response is analyzed by numerical simulation and coupled-mode theory (CMT), with the dates of each approach displaying consistency. Research shows that the GMR mode can be turned into the Fabry-Pérot BICs through the transverse resonance principle (TRP). The band structures and field distributions of the proposed loss system can further explain the BIC mechanism. Both static (grating pitch P) and dynamic parameters (incident angle θ) can be modulated to generate the Fabry-Pérot BICs. Moreover, we explained the reason why the strong coupling between the GMR and TPPs modes does not produce the Friedrich-Wintgen BIC. Taken together, the proposed structure can not only be applied to dual-band perfect absorbers and optical switches but also provides guidance for the realization of Fabry-Pérot BICs in lossy systems.

3.
Phys Chem Chem Phys ; 23(6): 3949-3962, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33544099

RESUMEN

Graphene, a new two-dimensional (2D) material, has attracted considerable attention in recent years because of the metallic characteristics at terahertz frequencies. The phase coupling of multilayer graphene-coupled grating structures is normally used to realize multiple plasmon-induced transparency (PIT) spectral responses. However, the device becomes more complicated with the increase in the number of graphene layers. In this work, we propose a five-step-coupled pyramid-shaped monolayer graphene metamaterial and predict a dynamically controllable PIT with four transparency peaks for the first time in the monolayer graphene metamaterial. A tunable multi-switch and good slow light effect is predicted over the wide PIT window, and the maximum modulation depth is high up to 16.89 dB, which corresponds to 97.95%, while the time delay of the induced transparent window is as high as 0.488 ps, where the corresponding group refractive index is 586. The electric field distributions and quantum level theory are used to explain the physical mechanism of the PIT with four transparency peaks. The coupled mode theory (CMT) is employed to establish the mathematical model of the PIT with four transparency peaks, and the consistency between the simulated and the calculated results is nearly perfect. We believe that the pyramid-shaped monolayer graphene metamaterial could be useful in efficient filters, switches, and slow light devices.

4.
J Opt Soc Am A Opt Image Sci Vis ; 38(3): 412-418, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33690472

RESUMEN

In this paper, a tunable plasmon-induced transparency (PIT) structure based on a monolayer black phosphorus metamaterial is designed. In the structure, destructive interference between the bright and dark modes produces a significant PIT in the midinfrared band. Numerical simulation and theoretical calculation methods are utilized to analyze the tunable PIT effect of black phosphorus (BP). Finite-difference-time-domain simulations are consistent with theoretical calculations by coupled mode theory in the terahertz frequency band. We explored the anisotropy of a BP-based metasurface structure. By varying the geometrical parameters and carrier concentration of the monolayer BP, the interaction between the bright and dark modes in the structure can be effectively adjusted, and the active adjustment of the PIT effect is achieved. Further, the structure's group index can be as high as 139, which provides excellent slow-light performance. This study offers a new possibility for the practical applications of BP in micro-nano slow-light devices.

5.
Opt Express ; 28(26): 40013-40023, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33379537

RESUMEN

A terahertz metasurface consisting of a graphene ribbon and three graphene strips, which can generate a significant triple plasmon-induced transparency (triple-PIT), is proposed to realize a multifunction switch and optical storage. Numerical simulation triple-PIT which is the result of destructive interference between three bright modes and a dark mode can be fitted by coupled mode theory (CMT). The penta-frequency asynchronous and quatary-frequency synchronous switches can be achieved by modulating the graphene Fermi levels. And the switch performance including modulation depth (83.5% < MD < 93.5%) and insertion loss (0.10 dB < IL < 0.26 dB) is great excellent. In addition, the group index of the triple-PIT can be as high as 935, meaning an excellent optical storage is achieved. Thus, the work provides a new method for designing terahertz multi-function switches and optical storages.

6.
Opt Express ; 27(3): 3598-3608, 2019 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-30732376

RESUMEN

We propose a novel simple patterned monolayer graphene metamaterial structure based on tunable terahertz plasmon-induced transparency (PIT). Destructive interference in this structure causes pronounced PIT phenomenon, and the PIT response can be dynamically controlled by voltage since the existence of continuous graphene bands in the structural design. The theoretical transmission of this structure is calculated by coupled mode theory (CMT), and the results are highly consistent with the simulation curve. After that, the influence of the graphene mobility on the PIT response and absorption characteristics is researched. It is found that the absorption efficiency of our designed structure can reach up to 50%, meaning the structure is competent to prominent terahertz absorber. Moreover, the slow-light performance of this structure is discussed via analyzing the group refractive index and phase shift. It shows that the structure possesses a broad group refractive index band with ultra-high value, and the value is up to 382. This work will diversify the designs for versatile tunable terahertz devices and micro-nano slow-light devices.

7.
Opt Express ; 27(13): 17718-17728, 2019 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-31252728

RESUMEN

We have proposed a simple metal-dielectric-metal (MDM) waveguide system side-coupled with single-mode and multimode resonators. This proposed structure can achieve a typical dual plasmon-induced transparency (PIT) effect in the transmission spectra. The two PIT peaks exhibit opposite evolution tendencies with the increase in the depth of stubs. A multimode-coupled mode theory (M-CMT), confirmed by simulated results, is originally introduced to investigate the coupling effects of the proposed structure. Compared to the previous reported multichannel filters, the proposed structure includes obvious advantages, such as structural simplicity and ease of fabrication. In addition, the sensing characteristics of the proposed structure based on PIT effects are discussed numerically. The results demonstrate that the proposed structure is suitable for applications in multichannel filters, optical switches, and sensors.

8.
Opt Express ; 27(10): 13884-13894, 2019 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-31163846

RESUMEN

Dual plasmon-induced transparency (PIT) and plasmon-induced absorption (PIA) are simultaneously achieved in an integrated metamaterial composed of single layer of graphene. Electric field distribution and coupled mode theory (CMT) are used to demonstrate the physical mechanism of dual PIT and PIA, and the theoretical result of CMT is highly consistent with the finite-difference time-domain (FDTD) method simulation result. Further research shows that both the dual PIT and PIA phenomenon can be effectively modulated by the Fermi level, the carrier mobility of the graphene and the refractive index of the surrounding environment. It is meaningful that the absorption of the dual PIA spectrum can be abruptly increased to 93.5% when the carrier mobility of graphene is 0.8m2/Vs. In addition, the group index can be as high as 328. Thus, our work can pave new way for developing excellent slow-light and light absorption functional devices.

9.
J Opt Soc Am A Opt Image Sci Vis ; 36(8): 1306-1311, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31503555

RESUMEN

An H-type-graphene-based slow-light metamaterial is proposed to produce a dual plasmon-induced transparency phenomenon, which can be effectively modulated by Fermi level, carrier mobility of graphene, and the medium environment. The data calculated by coupled mode theory and results of numerical simulation show prominent agreement. In addition, both the simplicity and continuity of the units of graphene-based metamaterial are extraordinary advantages. Furthermore, the slow-light characteristics of the proposed structure show that the group refractive index is as high as 237, which is more competitive than some other slow-light devices.

10.
Phys Chem Chem Phys ; 20(40): 25959-25966, 2018 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-30294739

RESUMEN

We propose a simulated terahertz design based on planar graphene ribbons. With numerical simulation, we can achieve a very obvious dual plasmon-induced transparency phenomenon through the destructive interference in this structure. Moreover, due to the simple design of this structure and the complete continuous graphene ribbons, the Fermi level of graphene can be regulated by voltage. Thus, the dual plasmon-induced transparency phenomenon can be easily tuned in the numerical simulation. Further structural analysis shows that the two graphene chips on the side of the graphene ribbons play a crucial role in the dual plasmon-induced transparency phenomenon. As the length of the two chips is close, the dual plasmon-induced transparency phenomenon gradually becomes a single plasmon-induced transparency phenomenon. The theoretical analysis of this structure shows that this system has a very high group index, and its maximum value is 800, which is far greater than that of other types of slow light devices. This work may open up a new way for designing tunable terahertz graphene-based devices and slow light devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA