Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
1.
Chem Soc Rev ; 53(11): 5781-5861, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38690681

RESUMEN

Ferroelectricity, which has diverse important applications such as memory elements, capacitors, and sensors, was first discovered in a molecular compound, Rochelle salt, in 1920 by Valasek. Owing to their superiorities of lightweight, biocompatibility, structural tunability, mechanical flexibility, etc., the past decade has witnessed the renaissance of molecular ferroelectrics as promising complementary materials to commercial inorganic ferroelectrics. Thus, on the 100th anniversary of ferroelectricity, it is an opportune time to look into the future, specifically into how to push the boundaries of material design in molecular ferroelectric systems and finally overcome the hurdles to their commercialization. Herein, we present a comprehensive and accessible review of the appealing development of molecular ferroelectrics over the past 10 years, with an emphasis on their structural diversity, chemical design, exceptional properties, and potential applications. We believe that it will inspire intense, combined research efforts to enrich the family of high-performance molecular ferroelectrics and attract widespread interest from physicists and chemists to better understand the structure-function relationships governing improved applied functional device engineering.

2.
J Am Chem Soc ; 145(5): 3187-3195, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36700656

RESUMEN

Supramolecular host-guest ferroelectrics based on solution processing are highly desirable because they are generally created with intrinsic piezoelectricity/ferroelectricity and do not need further poling. Poly(vinylidene fluoride) (PVDF) in the electric-active beta phase after stretching/annealing still shows no piezoelectric response unless poled. Although many supramolecular host-guest ferroelectrics have been discovered, their piezoelectricity is relatively small. Based on H/F substitution, we reported a supramolecular host-guest compound [(CF3-C6H4-NH3)(18-crown-6)][TFSA] (CF3-C6H4-NH3 = 4-trifluoromethylanilinium, TFSA = bis(trifluoromethanesulfonyl)ammonium) with a remarkable piezoelectric response of 42 pC/N under no poling condition. The introduction of F atoms increases phase transition temperature, polar axes, second harmonic generation (SHG) intensity, and piezoelectric coefficient d33. To our knowledge, such a large piezoelectric performance of [(CF3-C6H4-NH3)(18-crown-6)][TFSA] makes its d33, piezoelectric voltage coefficient g33, and mechanical quality factor Qm the highest among the reported supramolecular host-guest ferroelectric compounds and even larger than the values of PVDF. This work provides inspiration for optimizing piezoelectricity on molecular materials.

3.
J Am Chem Soc ; 145(8): 4892-4899, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36795554

RESUMEN

Metal-free perovskites with light weight and eco-friendly processability have received great interest in recent years due to their superior physical features in ferroelectrics, X-ray detection, and optoelectronics. The famous metal-free perovskite ferroelectric MDABCO-NH4-I3 (MDABCO = N-methyl-N'-diazabicyclo[2.2.2]octonium) has been demonstrated to exhibit excellent ferroelectricity comparable to that of inorganic ceramic ferroelectric BaTiO3, such as large spontaneous polarization and high Curie temperature (Ye et al. Science 2018, 361, 151). However, piezoelectricity as a vitally important index is far from enough in the metal-free perovskite family. Here, we report the discovery of large piezoelectric response in a new metal-free three-dimensional perovskite ferroelectric NDABCO-NH4-Br3 (NDABCO = N-amino-N'-diazabicyclo[2.2.2]octonium) by replacing the methyl group of MDABCO with the amino group. Besides the evident ferroelectricity, strikingly, NDABCO-NH4-Br3 shows a large d33 of 63 pC/N more than 4 times that of MDABCO-NH4-I3 (14 pC/N). The d33 value is also strongly supported by the computational study. To the best of our knowledge, such a large d33 value ranks the highest among the documented organic ferroelectric crystals to date and represents a major breakthrough in metal-free perovskite ferroelectrics. Combined with decent mechanical properties, NDABCO-NH4-Br3 is expected to be a competitive candidate for medical, biomechanical, wearable, and body-compatible ferroelectric devices.

4.
J Am Chem Soc ; 145(42): 23292-23299, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37819908

RESUMEN

Fullerenes offer versatile functionalities and are promising materials for a widespread range of applications from biomedicine and energy to electronics. Great efforts have been made to manipulate the symmetries of fullerene and its derivatives for studying material properties and novel effects, such as ferroelectricity with polar symmetry; however, no documentary report has been obtained to realize their ferroelectricity. Here, for the first time, we demonstrated clear ferroelectricity in a fullerene adduct formed by C60 and S8. More is different: the combination of the most symmetric molecule C60 with the highest Ih symmetry and molecule S8 with high D4d symmetry resulted in the polar C60S8 adduct with a low crystallographic symmetry of the C2v (mm2) point group at room temperature. The presented C60S8 undergoes polar-to-polar ferroelectric phase transition with the mm2Fm notation, whose ferroelectricity was confirmed by a ferroelectric hysteresis loop and ferroelectric domain switching. This finding opens up a new functionality for fullerenes and sheds light on the exploration of more ferroelectric fullerenes.

5.
J Am Chem Soc ; 145(3): 1936-1944, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36637030

RESUMEN

Piezoelectric materials that enable electromechanical conversion have great application value in actuators, transducers, sensors, and energy harvesters. Large piezoelectric (d33) and piezoelectric voltage (g33) coefficients are highly desired and critical to their practical applications. However, obtaining a material with simultaneously large d33 and g33 has long been a huge challenge. Here, we reported a hybrid perovskite ferroelectric [Me3NCH2Cl]CdBrCl2 to mitigate and roughly address this issue by heavy halogen substitution. The introduction of a large-size halide element softens the metal-halide bonds and reduces the polarization switching barrier, resulting in excellent piezoelectric response with a large d33 (∼440 pC/N), which realizes a significant optimization compared with that of previously reported [Me3NCH2Cl]CdCl3 (You et al. Science2017, 357, 306-309). More strikingly, [Me3NCH2Cl]CdBrCl2 simultaneously shows a giant g33 of 6215 × 10-3 V m/N, far exceeding those of polymers and conventional piezoelectric ceramics. Combined with simple solution preparation, easy processing of thin films, and a high Curie temperature of 373 K, these attributes make [Me3NCH2Cl]CdBrCl2 promising for high-performance piezoelectric sensors in flexible, wearable, and biomechanical devices.

6.
Anal Chem ; 95(44): 16201-16209, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37878758

RESUMEN

Circular dichroism (CD) spectroscopy is a well-known and powerful technique widely used for distinguishing chiral enantiomers based on their differential absorbance of the right and left circularly polarized light. With the increasing demand for solid-state chiral optics, CD spectroscopy has been extended to elucidate the chirality of solid-state samples beyond the traditional solution state. However, due to the sample preparation differential, the CD spectra of the same compound measured by different researchers may not be mutually consistent. In this study, we employ solution, powder, thin-film, and single-crystal samples to explore the challenges associated with CD measurements and distinguish between genuine and fake signals. Rational fabrication of the solid-state samples can effectively minimize the macroscopic anisotropic nature of the samples and thereby mitigate the influence of linear dichroism (LD) and linear birefringence (LB) effects, which arise from anisotropy-induced differences in the absorbances and refractive indices. The local anisotropic and overall isotropic features of the high-quality thin-film sample achieve an optically isotropic state, which exhibits superior CD signal repeatability at the front and back sides at different angles by rotating the sample along the light path. In addition, sample thickness-induced CD signal overload and absorption saturation pose more severe challenges than the LBLD-induced amplified CD signal but are rarely focused on. The CD signal overload in the deep UV region leads to the presence of fake signals, while absorption saturation results in a complete loss of the CD signal. These findings help obtain accurate CD signals by a well-fabricated optically isotropic sample to avoid LDLB and optimize the sample thickness to avoid fake signals and no signals.

7.
Phys Rev Lett ; 130(17): 176802, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37172248

RESUMEN

The mechanism on ferroelectric phase transitions is mainly attributed to the displacive and/or order-disorder transition of internal components since the discovery of the ferroelectricity in 1920, rather than the breaking and recombination of chemical bonds. Here, we demonstrate how to utilize the chemical bond rearrangement in a diarylethene-based crystal to realize the light-driven mm2F1-type ferroelectric phase transition. Such a photoinduced phase transition is entirely driven by switchable covalent bonds with breaking and reformation, enabling the reversible light-controllable ferroelectric polarization switching, dielectric and nonlinear optical bistability. Moreover, light as quantized energy can achieve contactless, nondestructive, and remote-control operations. This work proposes a new mechanism of ferroelectric phase transition, and highlights the significance of photochromic molecules in designing new ferroelectrics for photocontrol data storage and sensing.

8.
Angew Chem Int Ed Engl ; 62(31): e202306732, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37272456

RESUMEN

Chiral ferroelectric crystals with intriguing features have attracted great interest and many with point or axial chirality based on the stereocarbon have been successively developed in recent years. However, ferroelectric crystals with stereogenic heteroatomic chirality have never been documented so far. Here, we discover and report a pair of enantiomeric stereogenic sulfur-chiral single-component organic ferroelectric crystals, Rs -tert-butanesulfinamide (Rs -tBuSA) and Ss -tert-butanesulfinamide (Ss -tBuSA) through the deep understanding of the chemical design of molecular ferroelectric crystals. Both enantiomers adopt chiral-polar point group 2 (C2 ) and exhibit mirror-image relationships. They undergo high-temperature 432F2-type plastic ferroelectric phase transition around 348 K. The ferroelectricity has been well confirmed by ferroelectric hysteresis loops and domains. Polarized light microscopy records the evolution of the ferroelastic domains, according with the fact that the 432F2-type phase transition is both ferroelectric and ferroelastic. The very soft characteristics with low elastic modulus and hardness reveals their excellent mechanical flexibility. This finding indicates the first stereosulfur chiral molecular ferroelectric crystals, opening up new fertile ground for exploring molecular ferroelectric crystals with great application prospects.

9.
Angew Chem Int Ed Engl ; 62(51): e202315189, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37919233

RESUMEN

Thermally triggered spatial symmetry breaking in traditional ferroelectrics has been extensively studied for manipulation of the ferroelectricity. However, photoinduced molecular orbital breaking, which is promising for optical control of ferroelectric polarization, has been rarely explored. Herein, for the first time, we synthesized a homochiral fulgide organic ferroelectric crystal (E)-(R)-3-methyl-3-cyclohexylidene-4-(diphenylmethylene)dihydro-2,5-furandione (1), which exhibits both ferroelectricity and photoisomerization. Significantly, 1 shows a photoinduced reversible change in its molecular orbitals from the 3 π molecular orbitals in the open-ring isomer to 2 π and 1 σ molecular orbitals in the closed-ring isomer, which enables reversible ferroelectric domain switching by optical manipulation. To our knowledge, this is the first report revealing the manipulation of ferroelectric polarization in homochiral ferroelectric crystal by photoinduced breaking of molecular orbitals. This finding sheds light on the exploration of molecular orbital breaking in ferroelectrics for optical manipulation of ferroelectricity.

10.
J Am Chem Soc ; 144(19): 8633-8640, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35535855

RESUMEN

The optical manipulation of polarization has gained widespread attention because it offers a promising route to new contactless memories and switches. However, the current research basically focuses on the photocontrol of data storage rather than data reading, which cannot realize the whole process of contactless write-read-erase data storage. Here, we present a pair of enantiomorphic diarylethene derivative ferroelectric crystals, showing a light-driven phase transition triggered by photoisomerization between the open and closed forms. Under the visible light, they exhibit a binary-domain state in the open form with white color and the band gap of 3.26 eV, while they show a single-domain state in the closed form with blue color and the band gap of 1.68 eV after UV irradiation of 254/365 nm. In addition to writing and erasing ferroelectric domains with light, we can also use light to read their color to determine the polarization state of domains. Moreover, diarylethene derivatives have better thermal stability, higher photoexcited conversion efficiency, and larger changes of the absorption wavelength between two isomers than those in salicylideneaniline derivatives. This work not only discovers the first diarylethene-based ferroelectric crystals but also successfully realizes completely contactless manipulation of write-read-erase data storage in the organic ferroelectric semiconductors.

11.
J Am Chem Soc ; 144(48): 22325-22331, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36426869

RESUMEN

Molecular ferroelectrics with large piezoelectric responses have long been sought for their advantages of light weight, mechanical flexibility, and easy preparation, in contrast to the widely used inorganic counterparts. Representatively, a molecular ferroelectric crystal [Me3NCH2Cl]CdCl3 (TMCM-CdCl3) has been found to show a large piezoelectric coefficient d33 of 220 pC/N exceeding that of BaTiO3 (You et al. Science2017, 357, 306-309). However, although the d33 of molecular ferroelectrics has achieved great progress, their electromechanical coupling factor k33, which is essential for various piezoelectric applications, including ultrasonic transducers and actuators, was rarely explored and is far below the level of inorganic ferroelectrics. The major reason for this situation is the great challenge of growing large-size crystals which is a key limiting factor for measuring k33. Here, we grew inch-size crystals of organic-inorganic perovskite ferroelectric TMCM-CdCl3 with a high d33 (383 pC/N) for investigating its piezoelectric responses including the k33 (0.483) by the resonance method. Such high k33 (0.483) is much larger than those of other molecular ferroelectrics and competitive with that of BaTiO3 (0.5). In addition, TMCM-CdCl3 has a low elastic modulus of 13.03 GPa, an order of magnitude lower than that of BaTiO3. This finding sheds light on the exploration of large electromechanical coupling factors in molecular ferroelectrics for potential applications in flexible and portable piezoelectric devices.

12.
J Am Chem Soc ; 144(30): 13806-13814, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35816081

RESUMEN

Ferroelectric domains and domain walls are unique characteristics of ferroelectric materials. Among them, charged domain walls (CDWs) are a special kind of peculiar microstructure that highly improve conductivity, piezoelectricity, and photovoltaic efficiency. Thus, CDWs are believed to be the key to ferroelectrics' future application in fields of energy, sensing, information storage, and so forth. Studies on CDWs are one of the most attractive directions in conventional inorganic ferroelectric ceramics. However, in newly emerged molecular ferroelectrics, which have advantages such as lightweight, easy preparation, simple film fabrication, mechanical flexibility, and biocompatibility, CDWs are rarely observed due to the lack of free charges. In inorganic ferroelectrics, doping is a traditional method to induce free charges, but for molecular ferroelectrics fabricated by solution processes, doping usually causes phase separation or phase transition, which destabilizes or removes ferroelectricity. To realize stable CDWs in molecular systems, we designed and synthesized an n-type molecular ferroelectric, 1-adamantanammonium hydroiodate. In this compound, negative charges are induced by defects in the I- vacancy, and CDWs can be achieved. Nanometer-scale CDWs that are stable at temperatures as high as 373 K can be "written" precisely by an electrically biased metal tip. More importantly, this is the first time that the charge diffusion of CDWs at variable temperatures has been investigated in molecular ferroelectrics. This work provides a new design strategy for n-type molecular ferroelectrics and may shed light on their future applications in flexible electronics, microsensors, and so forth.

13.
J Am Chem Soc ; 144(42): 19559-19566, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36222219

RESUMEN

Chirality exists everywhere from natural amino acids to particle physics. The introduction of point chirality has recently been shown to be an efficient strategy for the construction of molecular ferroelectrics. In contrast to point chirality, however, axial chirality is rarely used to design ferroelectrics so far. Here, based on optically active 1,1'-bi-2-naphthol (BINOL), which has been applied extensively as a versatile chiral reagent in asymmetric catalysis, chiral recognition, and optics, we successfully design a pair of axial-chiral BINOL multiferroics, (R)-BINOL-DIPASi and (S)-BINOL-DIPASi. They experience a 2F1-type full ferroelectric/ferroelastic phase transition at a high temperature of 362 and 363 K, respectively. Piezoelectric force microscopy and polarization-voltage hysteresis loops demonstrate their ferroelectric domains and domain switching, and polarized light microscopy visualizes the evolution of stripe-shaped ferroelastic domains. The axial-chiral BINOL building block promotes the generation of the polar structure and ferroelectricity, and the organosilicon component increases the rotational energy barrier and thus the phase transition temperature. This work presents the first axial-chiral high-temperature multiferroic crystals, offering an efficient path for designing molecular multiferroics through the introduction of axial chirality.

14.
Chemistry ; 28(5): e202102990, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-34792222

RESUMEN

In recent years, molecular ferroelectrics have received great attention due to their low weight, mechanical flexibility, easy preparation and excellent ferroelectric properties. Among them, crown-ether-based molecular ferroelectrics, which are typically composed of the host crown ethers, the guest cations anchored in the crown ethers, and the counterions, are of great interest because of the host-guest structure. Such a structure allows the components to occur order-disorder transition easily, which is beneficial for inducing ferroelectric phase transition. Herein, we summarized the research progress of crown ether host-guest molecular ferroelectrics, focusing on their crystal structure, phase transition, ferroelectric-related properties. In view of the small spontaneous polarization and uniaxial nature, we outlook the chemical design strategies for obtaining high-performance crown-ether-based molecular ferroelectrics. This minireview will be of guiding significance for the future exploration of crown ether host-guest molecular ferroelectrics.

15.
Proc Natl Acad Sci U S A ; 116(13): 5878-5885, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30850531

RESUMEN

For nearly 100 y, homochiral ferroelectrics were basically multicomponent simple organic amine salts and metal coordination compounds. Single-component homochiral organic ferroelectric crystals with high-Curie temperature (Tc) phase transition were very rarely reported, although the first ferroelectric Rochelle salt discovered in 1920 is a homochiral metal coordination compound. Here, we report a pair of single-component organic enantiomorphic ferroelectrics, (R)-3-quinuclidinol and (S)-3-quinuclidinol, as well as the racemic mixture (Rac)-3-quinuclidinol. The homochiral (R)- and (S)-3-quinuclidinol crystallize in the enantiomorphic-polar point group 6 (C6) at room temperature, showing mirror-image relationships in vibrational circular dichroism spectra and crystal structure. Both enantiomers exhibit 622F6-type ferroelectric phase transition with as high as 400 K [above that of BaTiO3 (Tc = 381 K)], showing very similar ferroelectricity and related properties, including sharp step-like dielectric anomaly from 5 to 17, high saturation polarization (7 µC/cm2), low coercive field (15 kV/cm), and identical ferroelectric domains. Their racemic mixture (Rac)-3-quinuclidinol, however, adopts a centrosymmetric point group 2/m (C2h), undergoing a nonferroelectric high-temperature phase transition. This finding reveals the enormous benefits of homochirality in designing high-Tc ferroelectrics, and sheds light on exploring homochiral ferroelectrics with great application.

16.
Chem Soc Rev ; 50(14): 8248-8278, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34081064

RESUMEN

With prosperity, decay, and another spring, molecular ferroelectrics have passed a hundred years since Valasek first discovered ferroelectricity in the molecular compound Rochelle salt. Recently, the proposal of ferroelectrochemistry has injected new vigor into this century-old research field. It should be highlighted that piezoresponse force microscopy (PFM) technique, as a non-destructive imaging and manipulation method for ferroelectric domains at the nanoscale, can significantly speed up the design rate of molecular ferroelectrics as well as enhance the ferroelectric and piezoelectric performances relying on domain engineering. Herein, we provide a brief review of the contribution of the PFM technique toward assisting the design and performance optimization of molecular ferroelectrics. Relying on the relationship between ferroelectric domains and crystallography, together with other physical characteristics such as domain switching and piezoelectricity, we believe that the PFM technique can be effectively applied to assist the design of high-performance molecular ferroelectrics equipped with multifunctionality, and thereby facilitate their practical utilization in optics, electronics, magnetics, thermotics, and mechanics among others.

17.
Angew Chem Int Ed Engl ; 61(22): e202200135, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35166001

RESUMEN

Organic ferroelectrics are flexible, lightweight, and bio-friendly, promising for bio-harmonized electronic devices, while their ferroelectric lithography remains relatively unexplored. Here, by introducing homochirality and ZE photoisomerization, we obtained a pair of organic enantiomorphic ferroelectrics, di(benzylamino)-substituted derivatives of muconic acids, the first ferroelectrics in the muconic family. Their ferroelectric and chiral features were confirmed by the polarization-electric field hysteresis loops and circular dichroism spectra, respectively. Piezoresponse force microscopy measurements demonstrate that the desired domain structure can be precisely achieved by applying a local electric field on a predefined pattern in their thin films. Moreover, thermogravimetric analyses reveal that their ferroelectricity can persist up to above 550 K. The precise pattern lithography and excellent thermal stability make them competitive candidates for ferroelectric lithography.

18.
Angew Chem Int Ed Engl ; 61(32): e202204135, 2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35670373

RESUMEN

Cyanido-bridged dimetallic complexes are attracting attention due to their varied structures and properties. However, homochiral cyanido-bridged dimetallic complexes are rare, and making them ferroelectric is a great challenge. Introducing C-F⋅⋅⋅K interactions between the guest chiral cations and the host [KFe(CN)6 ]2- framework, gives three-dimensional cyanido-bridged dimetallic multiferroics, [R- and S-3-fluoropyrrolidinium]2 [KFe(CN)6 ] (R- and S-3-FPC). The mirror-symmetric vibrational circular dichroism (VCD) signal shows their enantiomeric nature. R- and S-3-FPC crystallize in the same chiral-polar space group P21 at 298 K. Piezoresponse force microscopy (PFM), polarizing optical microscopy, and temperature-dependent second-harmonic generation (SHG) measurements show their multiferroic properties (the coexistence of ferroelectricity and ferroelasticity), in line with the Aizu notation of 222F2. R-3-FPC shows excellent ferroelectricity with saturated polarization up to 9.4 µC cm-2 .

19.
Angew Chem Int Ed Engl ; 61(33): e202206034, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35604204

RESUMEN

Organic-inorganic hybrid perovskites (OIHPs) have gained tremendous interest for their rich functional properties. However, the coexistence of more than one of ferroelectricity, ferromagnetism and ferroelasticity has been rarely found in OIHPs. Herein, we report a two-dimensional Cr2+ -based OIHP, [3,3-difluorocyclobutylammonium]2 CrCl4 ([DFCBA]2 CrCl4 ), which shows both ferroelectricity and ferromagnetism. It undergoes a 4/mmmFm type ferroelectric phase transition at a temperature as high as 387 K and shows multiaxial ferroelectricity with a saturate polarization of 2.1 µC cm-2 . It acts as a soft ferromagnet with a Curie temperature of 32.6 K. This work throws light on the exploration of OIHPs with the coexistence of ferroelectricity and ferromagnetism for applications in future multifunctional smart devices.

20.
Angew Chem Int Ed Engl ; 61(44): e202210809, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36103138

RESUMEN

Organosilicons have been used extensively in aerospace, electronics, food, medicine and other fields, due to their low viscosity, hydrophobicity, corrosion resistance, non-toxic, and physiologically inert features. Despite extensive interest, however, organosilicon ferroelectric crystals have never been found. Here, by using the chemical design strategy, we successfully obtained a molecular ferroelectric D-chiro-inositol-SiMe3 with polar P43 symmetry, whose spontaneous polarization can be electrically switchable on thin film. The introduction of organosilicon groups endows the thin films with excellent softness, ductility and flexibility (extremely low hardness of 72.8 MPa and small elastic modulus of 5.04 GPa) that are desirable for biomedical and human-compatible applications. As the first case of organosilicon ferroelectric crystal to date, this work offers a new structural paradigm for molecular ferroelectrics, and highlights their potential for flexible bio-electronic applications.


Asunto(s)
Electrónica , Inositol , Humanos , Electricidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA