RESUMEN
The escalation of global nitrogen deposition levels has heightened the inhibitory impact of phosphorus limitation on plant growth in subtropical forests. Plant roots area particularly sensitive tissue to nitrogen and phosphorus elements. Changes in the morphological characteristics of plant roots signify alterations in adaptive strategies. However, our understanding of resource-use strategies of roots in this environment remains limited. In this study, we conducted a 10-month experiment at the Castanopsis kawakamii Nature Reserve to evaluate the response of traits of seedling roots (such as specific root length, average diameter, nitrogen content, and phosphorus content) to nitrogen and phosphorus addition. The aim was to reveal the adaptation strategies of roots in different nitrogen and phosphorus addition concentrations. The results showed that: (1) The single phosphorus and nitrogen-phosphorus interaction addition increased the specific root length, surface area, and root phosphorus content. In addition, single nitrogen addition promotes an increase in the average root diameter. (2) Non-nitrogen phosphorus addition and single nitrogen addition tended to adopt a conservative resource-use strategy to maintain growth under low phosphorus conditions. (3) Under the single phosphorus addition and interactive addition of phosphorus and nitrogen, the roots adopted an acquisitive resource-use strategy to obtain more available phosphorus resources. Accordingly, the adaptation strategy of seedling roots can be regulated by adding appropriate concentrations of nitrogen or phosphorus, thereby promoting the natural regeneration of subtropical forests.
RESUMEN
The concentration of negative air ions (NAIs) is an important indicator of air quality. Here, we analyzed the distribution patterns of negative air ion (NAI) concentrations at different time scales using statistical methods; then described the contribution of meteorological factors of the different season to the concentration of NAIs using correlation analysis and regression analysis; and finally made the outlook for the trends of NAI concentrations in the prospective using the auto regressive integrated moving average (ARIMA) models. The dataset of NAI concentrations and meteorological factors measured at the fixed stations in the Mountain Wuyi National Park were obtained from the Fujian Provincial Meteorological Bureau. The study showed that NAI concentrations were correlated with relative humidity spanning all seasons. Water was an important factor affecting the distribution of NAI concentrations in different time series. Compared with other ARIMA models, the outlook value of the ARIMA (0,1, 1) model was closer to the original data and the errors were smaller. This article provided a unique perspective on the study of the distribution of negative air oxygen ions over time series.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Aire/análisis , Contaminantes Atmosféricos/análisis , Iones , Parques Recreativos , Estudios Prospectivos , Estaciones del AñoRESUMEN
The aim of this study is to analyze the effects of forest gaps on the variations of soil properties in Castanopsis kawakamii natural forest. Soil physical and chemical properties in various sizes and development stages were studied in C. kawakamii natural forest gaps. The results showed that forest gaps in various sizes and development stages could improve soil pore space structure and water characteristics, which may effectively promote the water absorbing capacity for plant root growth and play an important role in forest regeneration. Soil pore space structure and water characteristics in small gaps showed more obvious improvements, followed by the medium and large gaps. Soil pore space structure and water characteristics in the later development stage of forest gaps demonstrated more obvious improvements, followed by the early and medium development stages. The contents of hydrolysable N and available K in various sizes and development stages of forest gaps were higher than those of non-gaps, whereas the contents of total N, total P, available P, organic matter, and organic carbon were lower. The contents of total N, hydrolysable N, available K, organic matter, and organic carbon in medium gaps were higher than those of large and small gaps. The disturbance of forest gaps could improve the soils' physical and chemical properties and increase the population species' richness, which would provide an ecological basis for the species coexistence in C. kawakamii natural forest.