Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
New Phytol ; 242(6): 2604-2619, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38563391

RESUMEN

Soil contamination with arsenic (As) can cause phytotoxicity and reduce crop yield. The mechanisms of As toxicity and tolerance are not fully understood. In this study, we used a forward genetics approach to isolate a rice mutant, ahs1, that exhibits hypersensitivity to both arsenate and arsenite. Through genomic resequencing and complementation tests, we identified OsLPD1 as the causal gene, which encodes a putative lipoamide dehydrogenase. OsLPD1 was expressed in the outer cell layer of roots, root meristem cells, and in the mesophyll and vascular tissues of leaves. Subcellular localization and immunoblot analysis demonstrated that OsLPD1 is localized in the stroma of plastids. In vitro assays showed that OsLPD1 exhibited lipoamide dehydrogenase (LPD) activity, which was strongly inhibited by arsenite, but not by arsenate. The ahs1 and OsLPD1 knockout mutants exhibited significantly reduced NADH/NAD+ and GSH/GSSG ratios, along with increased levels of reactive oxygen species and greater oxidative stress in the roots compared with wild-type (WT) plants under As treatment. Additionally, loss-of-function of OsLPD1 also resulted in decreased fatty acid concentrations in rice grain. Taken together, our finding reveals that OsLPD1 plays an important role for maintaining redox homeostasis, conferring tolerance to arsenic stress, and regulating fatty acid biosynthesis in rice.


Asunto(s)
Arsénico , Ácidos Grasos , Regulación de la Expresión Génica de las Plantas , Homeostasis , Oryza , Oxidación-Reducción , Proteínas de Plantas , Plastidios , Estrés Fisiológico , Oryza/genética , Oryza/efectos de los fármacos , Oryza/metabolismo , Homeostasis/efectos de los fármacos , Arsénico/toxicidad , Oxidación-Reducción/efectos de los fármacos , Ácidos Grasos/metabolismo , Ácidos Grasos/biosíntesis , Plastidios/metabolismo , Plastidios/efectos de los fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Mutación/genética , Dihidrolipoamida Deshidrogenasa/metabolismo , Dihidrolipoamida Deshidrogenasa/genética , Especies Reactivas de Oxígeno/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/genética , Estrés Oxidativo/efectos de los fármacos , Arsenitos/toxicidad
2.
New Phytol ; 240(2): 727-743, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37553956

RESUMEN

Although phosphorus is one of the most important essential elements for plant growth and development, the epigenetic regulation of inorganic phosphate (Pi) signaling is poorly understood. In this study, we investigated the biological function and mode of action of the high-mobility-group box 1 protein OsHMGB1 in rice (Oryza sativa), using molecular and genetic approaches. We determined that OsHMGB1 expression is induced by Pi starvation and encodes a nucleus-localized protein. Phenotypic analysis of Oshmgb1 mutant and OsHMGB1 overexpression transgenic plants showed that OsHMGB1 positively regulates Pi homeostasis and plant growth. Transcriptome deep sequencing and chromatin immunoprecipitation followed by sequencing indicated that OsHMGB1 regulates the expression of a series of phosphate starvation-responsive (PSR) genes by binding to their promoters. Furthermore, an assay for transposase-accessible chromatin followed by sequencing revealed that OsHMGB1 is involved in maintaining chromatin accessibility. Indeed, OsHMGB1 occupancy positively correlated with genome-wide chromatin accessibility and gene expression levels. Our results demonstrate that OsHMGB1 is a transcriptional facilitator that regulates the expression of a set of PSR genes to maintain Pi homeostasis in rice by increasing the chromatin accessibility, revealing a key epigenetic mechanism that fine-tune plant acclimation responses to Pi-limited environments.


Asunto(s)
Oryza , Oryza/metabolismo , Cromatina/metabolismo , Proteínas de Plantas/metabolismo , Epigénesis Genética , Homeostasis , Fosfatos/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/metabolismo
3.
Plant Cell Environ ; 46(4): 1087-1103, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36478590

RESUMEN

Global climate change has great impacts on plant growth and development, reducing crop productivity worldwide. Rice (Oryza sativa L.), one of the world's most important food crops, is susceptible to high-temperature stress from seedling stage to reproductive stage. In this review, we summarize recent advances in understanding the molecular mechanisms underlying heat stress responses in rice, including heat sensing and signalling, transcriptional regulation, transcript processing, protein translation, and post-translational regulation. We also highlight the irreversible effects of high temperature on reproduction and grain quality in rice. Finally, we discuss challenges and opportunities for future research on heat stress responses in rice.


Asunto(s)
Oryza , Oryza/fisiología , Respuesta al Choque Térmico , Calor , Reproducción , Grano Comestible
4.
Plant Cell Environ ; 46(4): 1195-1206, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36138316

RESUMEN

Leaf-form ferredoxin-NADP+ oxidoreductases (LFNRs) function in the last step of the photosynthetic electron transport chain, exist as soluble proteins in the chloroplast stroma and are weakly associated with thylakoids or tightly anchored to chloroplast membranes. Arabidopsis thaliana has two LFNRs, and the chloroplast proteins AtTROL and AtTIC62 participate in anchoring AtLFNRs to the thylakoid membrane. By contrast, the membrane anchoring mechanism of rice (Oryza sativa) LFNRs has not been elucidated. Here, we investigated the membrane-anchoring mechanism of LFNRs and its physiological roles in rice. We characterized the rice protein OsTROL1 based on its homology to AtTROL. We determined that OsTROL1 is also a thylakoid membrane anchor and its loss leads to a compensatory increase in OsTIC62. OsLFNR1 attachment through a membrane anchor depends on OsLFNR2, unlike the Arabidopsis counterparts. In addition, OsTIC62 was more highly expressed in the dark than under light conditions, consistent with the increased membrane binding of OsLFNR in the dark. Moreover, we observed reciprocal stabilization between OsLFNRs and their membrane anchors. In addition, unlike in Arabidopsis, the loss of LFNR membrane anchor affects photosynthesis in rice. Overall, our study sheds light on the mechanisms anchoring LFNRs to membranes in rice and highlights differences with Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Oryza , Arabidopsis/metabolismo , Oryza/metabolismo , Proteínas de Arabidopsis/metabolismo , Ferredoxinas/metabolismo , NADP/metabolismo , Cloroplastos/metabolismo , Fotosíntesis , Ferredoxina-NADP Reductasa/metabolismo , Hojas de la Planta/metabolismo
5.
Plant Cell ; 32(3): 740-757, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31919298

RESUMEN

Phosphate (Pi) uptake in plants depends on plasma membrane (PM)-localized phosphate transporters (PTs). OsCK2 phosphorylates PTs and inhibits their trafficking from the endoplasmic reticulum (ER) to the PM in rice (Oryza sativa), but how PTs are dephosphorylated is unknown. We demonstrate that the protein phosphatase type 2C (PP2C) protein phosphatase OsPP95 interacts with OsPT2 and OsPT8 and dephosphorylates OsPT8 at Ser-517. Rice plants overexpressing OsPP95 reduced OsPT8 phosphorylation and promoted OsPT2 and OsPT8 trafficking from the ER to the PM, resulting in Pi accumulation. Under Pi-sufficient conditions, Pi levels were lower in young leaves and higher in old leaves in ospp95 mutants than in those of the wild type, even though the overall shoot Pi levels were the same in the mutant and the wild type. In the wild type, OsPP95 accumulated under Pi starvation but was rapidly degraded under Pi-sufficient conditions. We show that OsPHO2 interacts with and induces the degradation of OsPP95. We conclude that OsPP95, a protein phosphatase negatively regulated by OsPHO2, positively regulates Pi homeostasis and remobilization by dephosphorylating PTs and affecting their trafficking to the PM, a reversible process required for adaptation to variable Pi conditions.


Asunto(s)
Homeostasis , Proteínas de Transporte de Membrana/metabolismo , Oryza/metabolismo , Fosfatos/metabolismo , Proteínas de Plantas/metabolismo , Retículo Endoplásmico/metabolismo , Epistasis Genética , Regulación de la Expresión Génica de las Plantas , Modelos Biológicos , Mutación/genética , Especificidad de Órganos , Oryza/genética , Fosforilación , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Unión Proteica , Fracciones Subcelulares/metabolismo
6.
Int J Mol Sci ; 24(16)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37628859

RESUMEN

Mitogen-activated protein kinase cascades play important roles in various biological programs in plants, including immune responses, but the underlying mechanisms remain elusive. Here, we identified the lesion mimic mutant rsr25 (rust spots rice 25) and determined that the mutant harbored a loss-of-function allele for OsMKK6 (MITOGEN-ACTIVATED KINASE KINASE 6). rsr25 developed reddish-brown spots on its leaves at the heading stage, as well as on husks. Compared to the wild type, the rsr25 mutant exhibited enhanced resistance to the fungal pathogen Magnaporthe oryzae (M. oryzae) and to the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo). OsMKK6 interacted with OsMPK4 (MITOGEN-ACTIVATED KINASE 4) in vivo, and OsMKK6 phosphorylated OsMPK4 in vitro. The Osmpk4 mutant is also a lesion mimic mutant, with reddish-brown spots on its leaves and husks. Pathogen-related genes were significantly upregulated in Osmpk4, and this mutant exhibited enhanced resistance to M. oryzae compared to the wild type. Our results indicate that OsMKK6 and OsMPK4 form a cascade that regulates immune responses in rice.


Asunto(s)
Oryza , Oryza/genética , Resistencia a la Enfermedad/genética , Mitógenos , Alelos
7.
Plant J ; 105(3): 649-667, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33128314

RESUMEN

Low soil phosphorus (P) availability is a major limitation for crop production. The molecular mechanisms underlying plant responses and adaptation to phosphate (Pi) deficiency are unclear. OsbHLH6 (hereafter bHLH6), an uncharacterized rice (Oryza sativa) Pi starvation response gene encoding a basic helix-loop-helix protein, was identified by yeast two-hybrid screening using the phosphate response repressor OsSPX4 (hereafter SPX4) as bait. bHLH6 is expressed in shoots and roots, and its expression is significantly induced in shoots by Pi deficiency. bHLH6 overexpression lines showed Pi accumulation and enhanced Pi starvation responses, including upregulation of Pi starvation-induced genes and longer root hairs. A bhlh6 mutant showed no significant phenotype variation at the seedling stage. A pull-down assay indicated that bHLH6 had higher binding affinity with SPX4 compared to OsPHR2; therefore, bHLH6 competitively inhibited the interaction of SPX4 and OsPHR2. SPX4 overexpression rescued the Pi accumulation caused by bHLH6 overexpression under high- and low-P conditions. Moreover, overexpression of bHLH6 in an spx4 background did not affect the Pi content of spx4 under high- and low-P conditions. The bhlh6 spx4 double mutant showed lower shoot Pi concentrations and transcript levels of OsPT3 and OsPT10 compared with the spx4 mutant under high-P conditions. RNA sequencing results indicated that bHLH6 overexpression and spx4 mutant lines share many differentially expressed Pi-responsive genes. Therefore, bHLH6 is an important regulator for Pi signaling and homeostasis which antagonizes SPX4. This knowledge helps elucidate the molecular regulation of plant adaptation to Pi deficiency and will promote efforts toward the creation of low Pi-tolerant crops.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Oryza/fisiología , Fosfatos/metabolismo , Proteínas de Plantas/genética , Adaptación Fisiológica , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Homeostasis , Mutación , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Técnicas del Sistema de Dos Híbridos
8.
J Integr Plant Biol ; 64(5): 1059-1075, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35297168

RESUMEN

Iron (Fe) homeostasis is critical for plant growth, development, and stress responses. Fe levels are tightly controlled by intricate regulatory networks in which transcription factors (TFs) play a central role. A series of basic helix-loop-helix (bHLH) TFs have been shown to contribute to Fe homeostasis, but the regulatory layers beyond bHLH TFs remain largely unclear. Here, we demonstrate that the SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE (SPL) TF SlSPL-CNR negatively regulates Fe-deficiency responses in tomato (Solanum lycopersicum) roots. Fe deficiency rapidly repressed the expression of SlSPL-CNR, and Fe deficiency responses were intensified in two clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9-generated SlSPL-CNR knock-out lines compared to the wild-type. Comparative transcriptome analysis identified 47 Fe deficiency-responsive genes the expression of which is negatively regulated by SlSPL-CNR, one of which, SlbHLH101, helps regulate Fe uptake genes. SlSPL-CNR localizes the nucleus and interacts with the GTAC and BOX 4 (ATTAAT) motifs in the SlbHLH101 promoter to repress its expression. Inhibition of SlSPL-CNR expression in response to Fe deficiency was well correlated with the expression of the microRNA SlymiR157. SlymiR157-overexpressing tomato lines displayed enhanced Fe deficiency responses, as did SlSPL-CNR loss-of-function mutants. We propose that the SlymiR157-SlSPL-CNR module represents a novel pathway that acts upstream of SlbHLH101 to regulate Fe homeostasis in tomato roots.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Deficiencias de Hierro , Solanum lycopersicum , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo
9.
Yi Chuan ; 44(4): 313-321, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35437239

RESUMEN

Flanking genomic sequences refer to the DNA sequences flanking specific sites of known sequences in chromosome, which contain information such as candidate genes, transcriptional regulation, chromosome structure, and biosafety, and play an important role in genomics research. Flanking sequence acquisition technologies are mainly used in the cloning of regulatory sequences such as promoters and enhancers, identification of T-DNA or transposon insertion sites, chromosome walking, genome-wide gap filling, etc. It is an important means of structural genomics research and functional genomics research. It is applied in the identification of transgenic plants and animals and their safety management. With the development of molecular biology, many methods for obtaining flanking sequences have been established, including plasmid rescue, inverse PCR, ligation-mediated PCR, semi-random primer PCR, whole-genome resequencing etc. In this review, we summarize and compared different methods for acquiring flanking genomic sequence. The principles and research progress of each approach are discussed.


Asunto(s)
Genómica , Animales , Paseo de Cromosoma/métodos , Cartilla de ADN/genética , Plantas Modificadas Genéticamente/genética , Reacción en Cadena de la Polimerasa/métodos
10.
Plant Physiol ; 183(1): 250-262, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32161109

RESUMEN

Plants have evolved complex physiological and biochemical mechanisms to adapt to a heterogeneous soil phosphorus environment. PHOSPHATE2 (PHO2) is a phosphate (Pi) starvation-signaling regulator involved in maintaining Pi homeostasis in plants. Arabidopsis (Arabidopsis thaliana) PHO2 targets PHOSPHATE TRANSPORTER1 (PHT1) and PHO1 for degradation, whereas rice (Oryza sativa) PHO2 is thought to mediate PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 degradation. However, it is unclear whether and how PHO2 is post-translationally regulated. Here, we show that in rice, the CASEIN KINASE2 (OsCK2) catalytic subunit OsCK2α3 interacts with OsPHO2 in vitro and in vivo in vascular tissues cells, and phosphorylates OsPHO2 at Ser-841. Phosphorylated OsPHO2 is degraded more rapidly than native OsPHO2 in cell-free degradation assays. OsPHO2 interacts with OsPHO1 and targets it for degradation through a multivesicular body-mediated pathway. PHO1 mutation partially rescued the pho2 mutant phenotype. Further genetic analysis showed that a nonphosphorylatable version of OsPHO2 rescued the Ospho2 phenotype of high Pi accumulation in leaves better than native OsPHO2. In addition to the previously established role of OsCK2 in negatively regulating endoplasmic reticulum exit of PHT1 phosphate transporters, this work uncovers a role for OsCK2α3 in modulating Pi homeostasis through regulating the phosphorylation status and abundance of OsPHO2 in rice.


Asunto(s)
Quinasa de la Caseína II/metabolismo , Oryza/enzimología , Oryza/metabolismo , Fosfatos/metabolismo , Proteínas de Plantas/metabolismo , Quinasa de la Caseína II/genética , Regulación de la Expresión Génica de las Plantas , Mutación , Fosforilación , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/metabolismo
11.
Semin Cell Dev Biol ; 74: 114-122, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28648582

RESUMEN

Phosphorus (P) is an essential macronutrient for plant growth and development. To adapt to low inorganic-phosphate (Pi) environments, plants have evolved complex mechanisms and pathways that regulate the acquisition and remobilization of Pi and maintain P homeostasis. These mechanisms are regulated by complex gene regulatory networks through the functions of Pi transporters (PTs) and Pi starvation-induced (PSI) genes. This review summarizes recent progress in determining the molecular regulatory mechanisms of phosphate transporters and the Pi signaling network in the dicot Arabidopsis (Arabidopsis thaliana) and the monocot rice (Oryza sativa L.). Recent advances in this field provide a reference for understanding plant Pi signaling and specific mechanisms that mediate plant adaptation to environments with limited Pi availability. We propose potential biotechnological applications of known genes to develop plant cultivars with improved Pi uptake and use efficiency.


Asunto(s)
Fosfatos/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Transducción de Señal , Transporte Biológico
12.
Prep Biochem Biotechnol ; 50(2): 181-190, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31647386

RESUMEN

The synergism of cellulase (C), pectinase (P), and xylanase (X) for the saccharification of sweet potato residues (SPR) was investigated. The removal of starch from SPR was easily achieved by using amylase, but the cellulose conversion of de-starched SPR was relatively low, thus dilute H2SO4, NaOH, and H2O2 pretreatment was conducted to improve the enzymatic digestibility. The lignin content of NaOH pretreated SPR was the lowest, whereas H2SO4 pretreatment resulted in the lowest contents of hemicellulose and pectin. The combination of C, P, and X exhibited different sugar production patterns, C-P displayed synergistic action on glucose and galactose production from each type of SPR, C-X also exhibited synergistic effect on glucose production except when H2SO4 pretreated SPR was used, whereas no synergism between P-X on monosaccharide production was observed. The presence of synergism between cellulase and mixed accessory enzymes [C-(PX)] on glucose formation was determined by C-X, and the degree of synergism between C-P and C-(PX) on glucose production had a positive relationship with pectin content. The highest cellulose conversion of 96.2% was obtained from NaOH pretreated SPR using mixed enzymes comprising C, P, and X with the ratio of 8:1:1.


Asunto(s)
Celulasa/metabolismo , Endo-1,4-beta Xilanasas/metabolismo , Ipomoea batatas/metabolismo , Poligalacturonasa/metabolismo , Hidrólisis , Ipomoea batatas/química , Ácidos Sulfúricos/metabolismo
13.
Asian-Australas J Anim Sci ; 33(4): 588-596, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31480181

RESUMEN

OBJECTIVE: The objective of this study was to investigate the effects of low doses of organic trace minerals (iron, copper, manganese, and zinc) on productive performance, egg quality, yolk and tissue mineral retention, and fecal mineral excretion of laying hens during the late laying period. METHODS: A total of 405 healthy hens (HY-Line White, 50-week-old) were randomly divided into 3 treatments, with 9 replicates per treatment and 15 birds per replicate. The dietary treatments included feeding a basal diet + inorganic trace minerals at commercial levels (CON), a basal diet + inorganic trace minerals at 1/3 commercial levels (ITM), and a basal diet + proteinated trace minerals at 1/3 commercial levels (TRT). The trial lasted for 56 days. RESULTS: Compared to CON, ITM decreased (p<0.05) egg production, daily egg mass, albumen height, eggshell strength, yolk Fe concentration, serum alkaline phosphatase activity and total protein, and increased (p<0.05) egg loss and feed to egg ratio. Whereas with productive performance, egg quality, yolk mineral retention, and serum indices there were no differences (p>0.05) between CON and TRT. The concentrations of Fe and Mn in the tissue and tibia were changed notably in ITM relative to CON and TRT. Both ITM and TRT reduced (p<0.05) fecal mineral excretion compared to CON. CONCLUSION: These results indicate that dietary supplementation of low-dose organic trace minerals reduced fecal mineral excretion without negatively impacting hen performance and egg quality.

14.
Physiol Plant ; 166(4): 936-945, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30357845

RESUMEN

Tea (Camellia sinensis) is an important cash crop that is beneficial to human health because of its remarkable content of catechins. The biosynthesis of catechins follows the flavonoid pathway, which is highly branched. Among the enzymes involved in catechin biosynthesis, ANTHOCYANIDIN SYNTHASE (CsANS) functions at a branch point and play a critical role. Our previous work has showed that the gene encoding CsANS is regulated by light signals; however, the molecular mechanism behind remains unclear. Here, we cloned a full-length CsANS promoter and found that it contained a cis-element recognized by Arabidopsis thaliana HOMEOBOX2 (AtHB2). AtHB2 constitutes one of the class II HOMEODOMAIN-LEUCINE ZIPPER (HD-ZIP) proteins, which accumulate in the dark and mediate the shade avoidance response in most angiosperms. To analyze the transcription of CsANS in vivo, ß-glucuronidase and luciferase reporter genes driven by the obtained promoter were introduced into A. thaliana and Nicotiana attenuata, respectively. In both expression systems there were indications that the A. thaliana PRODUCTION OF ANTHOCYANIN PIGMENT1 (AtPAP1), a MYB transcription factor of flavonoid biosynthesis, increased the activity of the CsANS promoter, while AtHB2 could significantly undermine the effect of AtPAP1. Yeast two-hybrid and bimolecular fluorescence complementation assays showed that AtHB2 interacted with the A. thaliana TRANSPARENT TESTA GLABRA 1 (AtTTG1). A yeast three-hybrid assay further suggested that AtHB2 represses the expression of CsANS and regulates its response to light signals through competitive interactions with AtTTG1. These results show that HD-ZIP II proteins participate in light regulation of flavonoid biosynthesis.


Asunto(s)
Camellia sinensis/metabolismo , Catequina/metabolismo , Flavonoides/metabolismo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Camellia sinensis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Factores de Transcripción/genética
15.
Plant Cell Physiol ; 59(12): 2564-2575, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30329110

RESUMEN

Phosphate (Pi), as the main form of phosphorus that can be absorbed by plants, is one of the most limiting macro-nutrients for plants. However, the mechanism for maintaining Pi homeostasis in rice (Oryza sativa) is still not well understood. We identified a Pi-starvation-induced E3 ligase (OsPIE1) in rice. Using an in vitro self-ubiquitination assay, we determined the E3 ligase activities of OsPIE1. Using GUS staining and GFP detection, we analyzed tissue expression patterns of OsPIE1 and the subcellular localization of its encoded protein. The function of OsPIE1 in Pi homeostasis was analyzed using OsPIE1 overexpressors and ospie1 mutants. OsPIE1 was localized to the nucleus, and expressed in epidermis, exodermis and sclerenchyma layers of primary root. Under Pi-sufficient condition, overexpression of OsPIE1 upregulated the expression of OsPT2, OsPT3, OsPT10 and OsPAP21b, resulting in Pi accumulation and acid phosphatases (APases) induction in roots. OsSPX2 was strongly suppressed in OsPIE1 overexpressors. Further comparative transcriptome analysis, tissue expression patterns and genetic interaction analysis indicated that the enhancing of Pi accumulation and APase activities upon overexpression of OsPIE1 was (at least in part) caused by repression of OsSPX2. These results indicate that OsPIE1 plays an important role in maintaining Pi homeostasis in rice.


Asunto(s)
Homeostasis , Oryza/enzimología , Fosfatos/deficiencia , Proteínas de Plantas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Fosfatasa Ácida/metabolismo , Secuencia de Aminoácidos , Núcleo Celular/metabolismo , Epistasis Genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Especificidad de Órganos/genética , Oryza/genética , Oryza/crecimiento & desarrollo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Transcriptoma
16.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 40(4): 568-572, 2018 Aug 30.
Artículo en Zh | MEDLINE | ID: mdl-30193614

RESUMEN

Curcumin is a polyphenol extracted from turmeric rhizome and has multiple pharmacological roles. Recently,its anticancer properties have been recognized. Also,curcumin regulates autophagy in tumor cells via signaling pathways including AMP-activated protein kinase,mammalian target of rapamycin,transcription factor EB,Beclin-1,B-cell lymphoma 2,and endoplasmic reticulum stress. Considering the complicated crosstalk between autophagy and apoptosis,in this article we summaize the mechanism of curcumin-induced autophagy and its effect on apoptosis,with an attempt to provide insights on tumor therapy.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Autofagia , Curcumina/farmacología , Neoplasias/tratamiento farmacológico , Transducción de Señal , Proteínas Quinasas Activadas por AMP , Animales , Apoptosis , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Beclina-1 , Estrés del Retículo Endoplásmico , Humanos , Proteínas Proto-Oncogénicas c-bcl-2 , Serina-Treonina Quinasas TOR
17.
BMC Biotechnol ; 17(1): 20, 2017 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-28231788

RESUMEN

BACKGROUND: poly(L-malic acid) (PMA) is a water-soluble polyester with many attractive properties in medicine and food industries, but the high cost of PMA fermentation has restricted its further application for large-scale production. To overcome this problem, PMA production from Jerusalem artichoke tubers was successfully performed. Additionally, a valuable exopolysaccharide, pullulan, was co-produced with PMA by Aureobasidum pullulans HA-4D. RESULTS: The Jerusalem artichoke medium for PMA and pullulan co-production contained only 100 g/L hydrolysate sugar, 30 g/L CaCO3 and 1 g/L NaNO3. Compared with the glucose medium, the Jerusalem artichoke medium resulted in a higher PMA concentration (114.4 g/L) and a lower pullulan concentration (14.3 g/L) in a 5 L bioreactor. Meanwhile, the activity of pyruvate carboxylase and malate dehydrogenas was significantly increased, while the activity of α-phosphoglucose mutase, UDP-glucose pyrophosphorylase and glucosyltransferase was not affected. To assay the economic-feasibility, large-scale production in a 1 t fermentor was performed, yielding 117.5 g/L PMA and 15.2 g/L pullulan. CONCLUSIONS: In this study, an economical co-production system for PMA and pullulan from Jerusalem artichoke was developed. The medium for PMA and pullulan co-production was significantly simplified when Jerusalem artichoke tubers were used. With the simplified medium, PMA production was obviously stimulated, which would be associated with the improved activity of pyruvate carboxylase and malate dehydrogenas.


Asunto(s)
Ascomicetos/metabolismo , Glucanos/economía , Glucanos/metabolismo , Helianthus/metabolismo , Malatos/economía , Malatos/metabolismo , Polímeros/economía , Polímeros/metabolismo , Ascomicetos/genética , Técnicas de Cultivo Celular por Lotes/métodos , Ingeniería Genética/economía , Ingeniería Genética/métodos , Glucanos/genética , Glucanos/aislamiento & purificación , Helianthus/genética , Malatos/aislamiento & purificación , Tubérculos de la Planta/genética , Tubérculos de la Planta/metabolismo , Polímeros/aislamiento & purificación
18.
New Phytol ; 215(3): 1090-1101, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28407265

RESUMEN

Soil contamination with arsenic (As) can cause phytotoxicity and elevated As accumulation in rice grain. Here, we used a forward genetics approach to investigate the mechanism of arsenate (As(V)) tolerance and accumulation in rice. A rice mutant hypersensitive to As(V), but not to As(III), was isolated. Genomic resequencing and complementation tests were used to identify the causal gene. The function of the gene, its expression pattern and subcellular localization were characterized. OsHAC4 is the causal gene for the As(V)-hypersensitive phenotype. The gene encodes a rhodanase-like protein that shows As(V) reductase activity when expressed in Escherichia coli. OsHAC4 was highly expressed in roots and was induced by As(V). In OsHAC4pro-GUS transgenic plants, the gene was expressed exclusively in the root epidermis and exodermis. OsHAC4-eGFP was localized in the cytoplasm and the nucleus. Mutation in OsHAC4 resulted in decreased As(V) reduction in roots, decreased As(III) efflux to the external medium and markedly increased As accumulation in rice shoots. Overexpression of OsHAC4 increased As(V) tolerance and decreased As accumulation in rice plants. OsHAC4 is an As(V) reductase that is critical for As(V) detoxification and for the control of As accumulation in rice. As(V) reduction, followed by As(III) efflux, is an important mechanism of As(V) detoxification.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Arseniatos/toxicidad , Arsénico/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Arseniato Reductasas/metabolismo , Secuencia de Bases , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Mutación/genética , Oryza/genética , Fenotipo , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Transporte de Proteínas , Fracciones Subcelulares/metabolismo , Factores de Tiempo , Xilema/metabolismo
19.
New Phytol ; 211(2): 658-70, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26918637

RESUMEN

Arsenic (As) contamination in a paddy environment can cause phytotoxicity and elevated As accumulation in rice (Oryza sativa). The mechanism of As detoxification in rice is still poorly understood. We isolated an arsenate (As(V))-sensitive mutant of rice. Genomic resequencing and complementation identified OsCLT1, encoding a CRT-like transporter, as the causal gene for the mutant phenotype. OsCLT1 is localized to the envelope membrane of plastids. The glutathione and γ-glutamylcysteine contents in roots of Osclt1 and RNA interference lines were decreased markedly compared with the wild-type (WT). The concentrations of phytochelatin PC2 in Osclt1 roots were only 32% and 12% of that in WT after As(V) and As(III) treatments, respectively. OsCLT1 mutation resulted in lower As accumulation in roots but higher As accumulation in shoots when exposed to As(V). Under As(III) treatment, Osclt1 accumulated a lower As concentration in roots but similar As concentration in shoots to WT. Further analysis showed that the reduction of As(V) to As(III) was decreased in Osclt1. Osclt1 was also hypersensitive to cadmium (Cd). These results indicate that OsCLT1 plays an important role in glutathione homeostasis, probably by mediating the export of γ-glutamylcysteine and glutathione from plastids to the cytoplasm, which in turn affects As and Cd detoxification in rice.


Asunto(s)
Adaptación Fisiológica , Arsénico/toxicidad , Glutatión/metabolismo , Homeostasis , Proteínas de Transporte de Membrana/metabolismo , Oryza/metabolismo , Oryza/fisiología , Proteínas de Plantas/metabolismo , Adaptación Fisiológica/efectos de los fármacos , Secuencia de Bases , Cadmio/toxicidad , Clonación Molecular , Dipéptidos/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Prueba de Complementación Genética , Proteínas de Transporte de Membrana/genética , Mutación/genética , Especificidad de Órganos/genética , Oryza/efectos de los fármacos , Oryza/genética , Fenotipo , Filogenia , Fitoquelatinas/metabolismo , Proteínas de Plantas/genética , Transporte de Proteínas , Interferencia de ARN , Fracciones Subcelulares/metabolismo
20.
Plant Physiol ; 161(4): 2036-48, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23411694

RESUMEN

A dual-targeted protein belonging to the mitochondrial carrier family was characterized in rice (Oryza sativa) and designated 3'-Phosphoadenosine 5'-Phosphosulfate Transporter1 (PAPST1). The papst1 mutant plants showed a defect in thylakoid development, resulting in leaf chlorosis at an early leaf developmental stage, while normal leaf development was restored 4 to 6 d after leaf emergence. OsPAPST1 is highly expressed in young leaves and roots, while the expression is reduced in mature leaves, in line with the recovery of chloroplast development seen in the older leaves of papst1 mutant plants. OsPAPST1 is located on the outer mitochondrial membrane and chloroplast envelope. Whole-genome transcriptomic analysis reveals reduced expression of genes encoding photosynthetic components (light reactions) in papst1 mutant plants. In addition, sulfur metabolism is also perturbed in papst1 plants, and it was seen that PAPST1 can act as a nucleotide transporter when expressed in Escherichia coli that can be inhibited significantly by 3'-phosphoadenosine 5'-phosphosulfate. Given these findings, together with the altered phenotype seen only when leaves are first exposed to light, it is proposed that PAPST1 may act as a 3'-phosphoadenosine 5'-phosphosulfate carrier that has been shown to act as a retrograde signal between chloroplasts and the nucleus.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Cloroplastos/ultraestructura , Clonación Molecular , Escherichia coli/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Prueba de Complementación Genética , Cinética , Mutación/genética , Oryza/genética , Fenotipo , Filogenia , Transporte de Proteínas , Interferencia de ARN , Fracciones Subcelulares/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA