Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Am Nat ; 202(3): 337-350, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37606947

RESUMEN

AbstractIncreased rates of self-fertilization offer reproductive assurance when plant populations experience pollen limitation, but self-fertilization may reduce fitness by exposing deleterious mutations. If an environmental change responsible for pollen limitation also induces plastic mating system shifts toward self-pollination, the reproductive assurance benefit and inbreeding depression cost of increased self-fertilization occur immediately, while the benefit and cost happen more gradually when increased self-fertilization occur through evolution. I built eco-evolutionary models to explore the demographic and genetic conditions in which higher self-fertilization by plasticity and/or evolution rescues populations, following deficits due to a sudden onset of pollen limitation. Rescue is most likely under an intermediate level of selfing rate increase, either through plasticity or evolution, and this critical level of selfing rate increase is higher under stronger pollen limitation. Generally, rescue is more likely through plasticity than through evolution. Under weak pollen limitation, rescue by enhanced self-fertilization may mainly occur through purging of deleterious mutations rather than reproductive assurance. The selfing rate increase conferring the highest rescue probability is lower when the initial population size is smaller. This article shows the importance of plasticity during plant population rescue and offers insights for future studies of the evolution of mating system plasticity.


Asunto(s)
Depresión Endogámica , Polen , Densidad de Población , Polinización , Reproducción
2.
Opt Express ; 31(7): 11308-11319, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37155769

RESUMEN

Speckle patterns observed in coherent optical imaging reflect important characteristic information of the scattering object. To capture speckle patterns, angular resolved or oblique illumination geometries are usually employed in combination with Rayleigh statistical models. We present a portable and handheld 2-channel polarization-sensitive imaging instrument to directly resolve terahertz (THz) speckle fields in a collocated telecentric back-scattering geometry. The polarization state of the THz light is measured using two orthogonal photoconductive antennas and can be presented in the form of the Stokes vectors of the THz beam upon interaction with the sample. We report on the validation of the method in surface scattering from gold-coated sandpapers, demonstrating a strong dependence of the polarization state on the surface roughness and the frequency of the broadband THz illumination. We also demonstrate non-Rayleigh first-order and second-order statistical parameters, such as degree of polarization uniformity (DOPU) and phase difference, for quantifying the randomness of polarization. This technique provides a fast method for broadband THz polarimetric measurement in the field and has the potential for detecting light depolarization in applications ranging from biomedical imaging to non-destructive testing.

3.
J Evol Biol ; 36(10): 1525-1538, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37776088

RESUMEN

Populations suffer two types of stochasticity: demographic stochasticity, from sampling error in offspring number, and environmental stochasticity, from temporal variation in the growth rate. By modelling evolution through phenotypic selection following an abrupt environmental change, we investigate how genetic and demographic dynamics, as well as effects on population survival of the genetic variance and of the strength of stabilizing selection, differ under the two types of stochasticity. We show that population survival probability declines sharply with stronger stabilizing selection under demographic stochasticity, but declines more continuously when environmental stochasticity is strengthened. However, the genetic variance that confers the highest population survival probability differs little under demographic and environmental stochasticity. Since the influence of demographic stochasticity is stronger when population size is smaller, a slow initial decline of genetic variance, which allows quicker evolution, is important for population persistence. In contrast, the influence of environmental stochasticity is population-size-independent, so higher initial fitness becomes important for survival under strong environmental stochasticity. The two types of stochasticity interact in a more than multiplicative way in reducing the population survival probability. Our work suggests the importance of explicitly distinguishing and measuring the forms of stochasticity during evolutionary rescue.

4.
J Evol Biol ; 35(1): 23-39, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34860448

RESUMEN

It is theoretically established that self-fertilization can facilitate mutation accumulation, thus increasing extinction risk. However, in previous studies, selfing rates are often set as fixed parameters, but in natural systems, evolution of selfing rates and deleterious mutations may mutually affect each other. I carried out simulations to investigate the dynamics of selfing rates and mutation accumulation, by allowing deleterious mutations to coevolve with alleles that modify the selfing rate (selfing modifiers). I found that selfing rates will often fluctuate over time, due to successive invasion of alleles that increase selfing and outcrossing. Since mutation fixation is mainly caused by Muller's ratchet, its rate is sensitive to the change of the selfing rate mutations will accumulate in a punctuated pattern. The dynamics are influenced by several factors, such as recombination and the selfing rate effects of selfing modifier loci. Also, such temporal variation produces variation of selfing rates and mutation accumulation rates between multiple conspecific populations, which can increase the average fitness across populations. As factors, such as the genomic mutation rate of deleterious mutations, can simultaneously influence the selfing rate and mutation fixation, effects of these factors on mutation accumulation rates can be complicated and non-monotonic.


Asunto(s)
Endogamia , Acumulación de Mutaciones , Evolución Biológica , Modelos Genéticos , Mutación , Tasa de Mutación , Autofecundación
5.
J Evol Biol ; 34(11): 1781-1792, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34536252

RESUMEN

Pollination requires a flower to remain open for long enough to allow for the arrival of pollinators. However, maintaining flowers costs energy and resources. Therefore, flower longevity, the length of time a flower remains viable, is critical for the outcome of plant reproduction. Although previous studies showed that the evolution of flower longevity depends on the rates of pollen deposition and removal, whether plants should increase or decrease flower life span when the pollination environment is unpredictable has not been explored. Moreover, the common hypothesis that an unpredictable pollination environment should select for increased flower longevity may be too simplistic since there is no distinction drawn between the effects of spatial and temporal variation. Adopting evolutionary game theory, we investigate the evolution of flower longevity under three types of variation: spatial heterogeneity, daily fluctuations within a flowering season and yearly fluctuations between flowering seasons. We find that spatial heterogeneity often selects for a shorter flower lifespan, while temporal fluctuations of fitness accrual rates at both daily and yearly time scales tends to favour greater longevity, although daily and yearly fluctuations have somewhat different effects. However, the presence of correlation between female and male fitness accrual rates seems to have no effect on flower longevity. Our work suggests that explicit measurements of spatial and temporal variation in both female and male functions may provide a better understanding of the evolution of flower longevity and reproduction.


Asunto(s)
Longevidad , Polinización , Flores , Polen/genética , Reproducción
6.
Opt Express ; 28(9): 13482-13496, 2020 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-32403822

RESUMEN

We have developed a terahertz time-domain polarimetry (THz-TDP) system by applying frequency modulation to electro-optic sampling detection in a nonlinear crystal. We characterized the precision of this system in determining the polarization angles to be 1.3° for fixed time delay, and 0.5° for complete time-domain waveform. Furthermore, we calculated the Jones matrix of the optical components used for beam propagation to calibrate the induced systematic error. The advantages of employing this calibration approach are demonstrated on a sapphire crystal investigated at different sample test positions in transmission configuration, and using high resistivity Si, AlN and quartz in reflection geometry. The new THz-TDP technique has the advantage of not using any external polarizers, and therefore is not constrained by their optical performance limitations, such as restricted bandwidths and frequency-dependent extinction ratio. Finally, the THz-TDP technique can be easily implemented on existing time-domain spectroscopy (TDS) systems.

7.
Evolution ; 78(3): 401-412, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38069517

RESUMEN

The evolution of flowering time is often attributed to variations in pollinator rates over time. This study proposes that flowering time can evolve through siring success variation among individuals caused by differential pollen dispersal timing (a result of flowering time variation). By building quantitative genetic models, I show that flowering time evolves to be earlier when the pollen removal rate is low and pollen deposition rate is high, and the fertilization ability of removed pollen declines slowly. Using evolutionary game theory, I show that the evolutionarily stable variance of flowering time is large when the pollen removal rate is either low or high, the pollen deposition rate is moderate, and the fertilization ability of removed pollen declines rapidly. Investigation of the coevolution of flower longevity and flowering time shows that under constant pollination rates, late flowering will be correlated with long-lived flowers due to nonrandom mating, which suggests that the observed correlation between late flowering and short-lived flowers is caused by other factors, such as declining pollination rates during late-stage flowering. I discuss how altered pollination rates under climate change will influence flowering time evolution and the importance of distinguishing between pollen removal and deposition rates.


Asunto(s)
Polinización , Reproducción , Humanos , Flores , Polen , Cambio Climático
8.
Front Plant Sci ; 15: 1379730, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39045597

RESUMEN

Inbreeding depression (ID) is a major selective force during mating system evolution primarily contributed by highly to partially recessive deleterious mutations. Theories suggest that transient genetic association with fitness alleles can be important in affecting the evolution of alleles that modify the selfing rate during its sweep. Nevertheless, empirical tests often focus on the pre-existing genetic association between selfing rate and ID maintained under mutation-selection balance. Therefore, how this standing genetic association is affected by key factors and its impacts on the evolution of selfing remain unclear. I show that as the selection coefficient of deleterious mutations increases, the association between selfing rate and ID declines from positive to negative. These results predict that association between selfing and ID tends to be negative in populations with low selfing rates, while positive in highly selfing populations. Using population genetic and quantitative genetic models, I show that standing genetic associations between selfing rate and fitness alleles can significantly impact the evolution of the mean selfing rate of a population. I present better metrics of population-level ID, which can be calculated based on the correlation coefficient between individual selfing rate and the fitness of selfed and outcrossed offspring.

9.
Evolution ; 78(5): 879-893, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38280201

RESUMEN

Plants exhibit diverse breeding systems, with populations capable of outcrossing, selfing, and/or asexual reproduction. However, interactions between the three reproductive pathways remain not fully clear. Sexual reproduction introduces segregation and recombination, but incurs several costs. Selfing can affect the relative costs and benefits of sexual vs. asexual reproduction. Building population genetic models, I explore how selfing affects the evolution of a sexual reproduction rate modifier via (a) indirect selection due to segregation, (b) indirect selection from changes in recombination rates, and (c) selection from the cost of meiosis and mate limitation. The dominant selective force mediating the evolution of sex is found to vary with the rate of sexual reproduction and selfing, but selective force (a) and (c) are generally stronger than selective force (b). A modifier enhancing sexual reproduction tends to be favored by indirect selection generated by partially recessive, small-effect deleterious mutations, while hindered by highly recessive lethal mutations. Overall, evolution toward higher sexual reproduction is hindered at low sexual reproduction rates and intermediate selfing rates, but favored under high selfing rates. The results suggest that asexual reproduction may precede the evolution of selfing and offer insights into the evolution of mechanisms reducing geitonogamy in partially clonal populations.


Asunto(s)
Evolución Biológica , Modelos Genéticos , Selección Genética , Reproducción , Reproducción Asexuada , Autofecundación , Plantas/genética , Recombinación Genética
10.
Biomed Opt Express ; 15(4): 2328-2342, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38633080

RESUMEN

Many promising biomedical applications have been proposed for terahertz (THz) spectroscopy and diagnostic imaging techniques. Polarimetric imaging systems are generally useful for enhancing imaging contrasts, yet the interplay between THz polarization changes and the random discrete structures in biological samples is not well understood. In this work, we performed Monte Carlo simulations of the propagation of polarized THz waves in skin and adipose tissues based on the Mie scattering from intrinsic structures, such as hair follicles or sweat glands. We show that the polarimetric contrasts are distinctly affected by concentration, size and dielectric properties of the scatterers, as well as the frequency and polarization of the incident THz waves. We describe the experimental requirements for observing and extracting these polarimetric signals due to the low energy and small angular spread of the back-scattered THz radiation. We analyzed the spatially integrated Mueller matrices of samples in the normal-incidence back-scattering geometry. We show that the frequency-dependent degree of polarization (DOP) can be used to infer the concentrations and dielectric contents of the scattering structures. Our modeling approach can be used to inform the design of the imaging modalities and the interpretation of the spectroscopic data in future terahertz biomedical imaging applications.

11.
Sci Rep ; 14(1): 17714, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085453

RESUMEN

In recent years, handheld and portable terahertz instruments have been in rapid development for various applications ranging from non-destructive testing to biomedical imaging and sensing. For instance, we have deployed our Portable Handheld Spectral Reflection (PHASR) Scanners for in vivo full-spectroscopic imaging of skin burns in large animal models in operating room settings. In this paper, we debut the polarimetric version of the PHASR Scanner, and describe a generalized calibration technique to map the spatial and spectral dependence of the Jones matrix of an imaging scanner across its field of view. Our design is based on placement of two orthogonal photoconductive antenna (PCA) detectors separated by a polarizing beam splitter in the PHASR Scanner housing. We show that as few as three independent measurements of a well-characterized polarimetric calibration target are sufficient to determine the polarization state of the incident beam at the sample location, as well as to extract the Jones propagation matrix from the sample location to the detectors. We have tested the accuracy of our scanner by validating polarimetric measurements obtained from a birefringent crystal rotated to various angles, as compared to the theoretically predicted response of the sample. This new version of our PHASR scanner can be used for high-speed imaging and investigation of heterogeneity of polarization-sensitive samples in the field.

12.
Evolution ; 77(2): 482-495, 2023 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-36629514

RESUMEN

Macroevolutionary studies have estimated higher extinction rates of self-compatible lineages than self-incompatible ones. A leading explanation is that selfing may prevent adaptation, since models show that selfing can inhibit the fixation of adaptive alleles at a single locus (1-step adaptation). However, adaptation often involves changes at multiple loci (multi-step adaption), but the effects of selfing remain unclear because selfing increases homozygosity, which affects selection intensity, the effective population size, and the effective recombination rate. By modeling using population genetic models, I investigate the effects of selfing on adaption requiring fixation of 2 adaptive alleles, I show that intermediate selfing rates generally promote adaption, by increasing the fixation probability of the double-mutant haplotype once it is generated. In constant-sized populations, selfing increases the rate of adaptation through the fixation of new mutations even when both alleles are dominant. In demographically declining populations, the rescue probability rises sharply as the selfing rate increases from zero, but quickly drops to be low when it approaches 1.0. These findings are at odds with the hypothesis that higher extinction rates of self-compatible lineages result from reduced adaptive potential but may help explain why some studies have failed to detect relaxation of selection in selfers and also the prevalence of mixed-mating systems.


Asunto(s)
Adaptación Fisiológica , Autofecundación , Adaptación Fisiológica/genética , Mutación , Aclimatación , Reproducción , Modelos Genéticos , Selección Genética
13.
Res Sq ; 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38168438

RESUMEN

Many promising biomedical applications have been proposed for terahertz (THz) spectroscopy and diagnostic imaging techniques. Polarimetric imaging systems are generally useful for enhancing imaging contrasts, yet the interplay between THz polarization changes and the random discrete structures in biological samples are not well understood. In this work, we performed Monte Carlo simulations of the propagation of polarized THz waves in skin and adipose tissues based on the Mie scattering from intrinsic structures, such as hair follicles or sweat glands. We show that the polarimetric contrasts are distinctly affected by concentration, size and dielectric properties of the scatterers, as well as the frequency and polarization of the incident THz waves. We describe the experimental requirements for observing and extracting these polarimetric signals due to the low energy and small angular spread of the back-scattered THz radiation. We analyzed the spatially integrated Mueller matrices of samples in the normal-incidence back-scattering geometry. We show that the frequency-dependent degree of polarization (DOP) can be used to infer the concentrations and dielectric contents of the scattering structures. Our modeling approach can be used to inform the design of the imaging modalities and the interpretation of the spectroscopic data in future terahertz biomedical imaging applications.

14.
Evolution ; 77(4): 1043-1055, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36757067

RESUMEN

Sexual selection has a rich history of mathematical models that consider why preferences favor one trait phenotype over another (for population genetic models) or what specific trait value is preferred (for quantitative genetic models). Less common is exploration of the evolution of choosiness or preference strength: i.e., by how much a trait is preferred. We examine both population and quantitative genetic models of the evolution of preferences, specifically developing "baseline models" of the evolution of preference strength during the Fisher process. Using a population genetic approach, we find selection for stronger and stronger preferences when trait variation is maintained by mutation. However, this force is quite weak and likely to be swamped by drift in moderately-sized populations. In a quantitative genetic model, unimodal preferences will generally not evolve to be increasingly strong without bounds when male traits are under stabilizing viability selection, but evolve to extreme values when viability selection is directional. Our results highlight that different shapes of fitness and preference functions lead to qualitatively different trajectories for preference strength evolution ranging from no evolution to extreme evolution of preference strength.


Asunto(s)
Preferencia en el Apareamiento Animal , Selección Sexual , Masculino , Animales , Selección Genética , Genética de Población , Modelos Genéticos , Mutación , Evolución Biológica
15.
Evol Lett ; 7(6): 413-421, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38045722

RESUMEN

Egg rejection is an effective and widespread antiparasitic defense to eliminate foreign eggs from the nests of hosts of brood parasitic birds. Several lines of observational and critical experimental evidence support a role for learning by hosts in the recognition of parasitic versus own eggs; specifically, individual hosts that have had prior or current experience with brood parasitism are more likely to reject foreign eggs. Here we confirm experimentally the role of prior experience in altering subsequent egg-rejection decisions in the American robin Turdus migratorius, a free-living host species of an obligate brood parasite, the brown-headed cowbird Molothrus ater. We then model the coevolutionary trajectory of both the extent of mimicry of host eggs by parasitic eggs and the host's egg rejection thresholds in response to an increasing role of learning in egg recognition. Critically, with more learning, we see the evolution of both narrower (more discriminating) rejection thresholds in hosts and greater egg mimicry in parasites. Increasing host clutch size (number of eggs/nest) and increasing parasite load (parasitism rate) also have narrowing effects on the egg-rejection threshold. Together, these results suggest that learning from prior experience with egg rejection may play an important role in the coevolution of egg-mimetic lineages of brood parasites and the refined egg rejection defenses of hosts.

16.
Evolution ; 76(5): 883-898, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35395695

RESUMEN

Evolution of selfing is common in plant populations, but the genetic basis of selfing rate evolution remains unclear. Although the effects of genetic properties on fixation for mating-unrelated alleles have been investigated, loci that modify the selfing rate (selfing modifiers) differ from mating-unrelated loci in several aspects. Using population genetic models, I investigate the genetic basis of selfing rate evolution. For mating-unrelated alleles, selfing promotes fixation only for recessive mutations, but for selfing modifiers, because the selection coefficient depends on the background selfing rate, selfing can promote fixation even for dominant modifiers. For mating-unrelated alleles, the fixation probability from standing variation is independent of dominance and decreases with an increased background selfing rate. However, for selfing modifiers, the fixation probability peaks at an intermediate selfing rate and when alleles are recessive, because a change of its selection coefficient necessarily involves a change of the inbreeding coefficient, because both depend on the level of inbreeding depression. Furthermore, evolution of selfing involving multiple modifier loci is more likely when selfing is controlled by few large-effect rather than many slight-effect modifiers. I discuss how these characteristics of selfing modifiers have implications for the unidirectional transition from outcrossing to selfing and other empirical patterns.


Asunto(s)
Depresión Endogámica , Modelos Genéticos , Alelos , Evolución Biológica , Variación Genética , Endogamia , Mutación , Selección Genética
17.
Appl Phys Lett ; 120(18): 181107, 2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35539361

RESUMEN

We report on a time-domain polarimetry (TDP) system for generating and detecting broadband terahertz (THz) waves of different polarization angles. We generate THz waves from two-color laser filaments and determine their polarization states with a detection bandwidth of up to 8 THz using a spinning gallium phosphide crystal. The polarization of THz emission can be controlled by adjusting the position and tilt angle of the ß-barium borate crystal. We characterize the precision of this system for polarimetric measurements at fixed time delay to be 1.6 ° and 1.9 ° for complete time-domain waveforms. We also demonstrate the feasibility of our TDP system by measuring broadband optical properties of anisotropic samples in both transmission and reflection geometries. The THz-TDP technique can be easily integrated in conventional THz time-domain spectroscopy setups using nonlinear crystal detectors.

18.
Evolution ; 75(8): 2114-2123, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34192348

RESUMEN

Self-fertilization, prevalent in plants, is typically divided into three modes - prior, competing, and delayed selfing - based on the timing in which it occurs. Flower longevity affects both the opportunity for pollination and the resources allocated for fertility, and thus may influence the selection on different modes of self-fertilization. Additionally, selfing causes fertilization to depend less on pollinators, which may also influence the evolution of flower longevity. Using game-theoretical models, I investigate how inbreeding depression and the pollination environment influences the coevolution of the three modes of self-fertilization with flower longevity. Invasion of prior selfing allows the subsequent evolution of shorter flower longevity, and thus is favored over competing selfing. Prior selfing can also invade even under high inbreeding depression when the pollen deposition rate is low, but is inhibited by a higher level of delayed selfing. In general, the evolution of selfing decreases flower longevity, and reveals asymmetric effects of pollen deposition and removal on flower longevity. This study suggests considering realization of selfing and outcrossing as concrete processes by incorporating flower reproductive strategies (e.g., flower longevity) and pollination ecology (e.g., accrual rate) may offer better understanding of the evolution of mating systems and flower reproductive traits.


Asunto(s)
Longevidad , Autofecundación , Evolución Biológica , Flores , Plantas , Polinización , Reproducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA