Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 401
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(26): e2320835121, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38900797

RESUMEN

Upper aerodigestive squamous cell carcinoma (UASCC) is a common and aggressive malignancy with few effective therapeutic options. Here, we investigate amino acid metabolism in this cancer, surprisingly noting that UASCC exhibits the highest methionine level across all human cancers, driven by its transporter LAT1. We show that LAT1 is also expressed at the highest level in UASCC, transcriptionally activated by UASCC-specific promoter and enhancers, which are directly coregulated by SCC master regulators TP63/KLF5/SREBF1. Unexpectedly, unbiased bioinformatic screen identifies EZH2 as the most significant target downstream of the LAT1-methionine pathway, directly linking methionine metabolism to epigenomic reprogramming. Importantly, this cascade is indispensable for the survival and proliferation of UASCC patient-derived tumor organoids. In addition, LAT1 expression is closely associated with cellular sensitivity to inhibition of the LAT1-methionine-EZH2 axis. Notably, this unique LAT1-methionine-EZH2 cascade can be targeted effectively by either pharmacological approaches or dietary intervention in vivo. In summary, this work maps a unique mechanistic cross talk between epigenomic reprogramming with methionine metabolism, establishes its biological significance in the biology of UASCC, and identifies a unique tumor-specific vulnerability which can be exploited both pharmacologically and dietarily.


Asunto(s)
Carcinoma de Células Escamosas , Regulación Neoplásica de la Expresión Génica , Transportador de Aminoácidos Neutros Grandes 1 , Metionina , Metionina/metabolismo , Humanos , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Transportador de Aminoácidos Neutros Grandes 1/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Línea Celular Tumoral , Epigénesis Genética , Epigenómica/métodos , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/patología , Ratones , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Animales , Proliferación Celular , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Reprogramación Celular/genética
2.
J Biol Chem ; 300(7): 107414, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38810697

RESUMEN

Lysyl oxidase-like 2 (LOXL2) is a member of the lysyl oxidase family and has the ability to catalyze the cross-linking of extracellular matrix collagen and elastin. High expression of LOXL2 is related to tumor cell proliferation, invasion, and metastasis. LOXL2 contains 14 exons. Previous studies have found that LOXL2 has abnormal alternative splicing and exon skipping in a variety of tissues and cells, resulting in a new alternatively spliced isoform denoted LOXL2Δ13. LOXL2Δ13 lacks LOXL2WT exon 13, but its encoded protein has greater ability to induce tumor cell proliferation, invasion, and metastasis. However, the molecular events that produce LOXL2Δ13 are still unclear. In this study, we found that overexpression of the splicing factor hnRNPA1 in cells can regulate the alternative splicing of LOXL2 and increase the expression of LOXL2Δ13. The exonic splicing silencer exists at the 3' splice site and 5' splice site of LOXL2 exon 13. HnRNPA1 can bind to the exonic splicing silencer and inhibit the inclusion of exon 13. The RRM domain of hnRNPA1 and phosphorylation of hnRNPA1 at S91 and S95 are important for the regulation of LOXL2 alternative splicing. These results show that hnRNPA1 is a splicing factor that enhances the production of LOXL2Δ13.


Asunto(s)
Empalme Alternativo , Aminoácido Oxidorreductasas , Exones , Ribonucleoproteína Nuclear Heterogénea A1 , Ribonucleoproteína Nuclear Heterogénea A1/metabolismo , Ribonucleoproteína Nuclear Heterogénea A1/genética , Humanos , Aminoácido Oxidorreductasas/genética , Aminoácido Oxidorreductasas/metabolismo , Células HEK293 , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
3.
J Pathol ; 263(1): 74-88, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38411274

RESUMEN

Fascin actin-bundling protein 1 (Fascin) is highly expressed in a variety of cancers, including esophageal squamous cell carcinoma (ESCC), working as an important oncogenic protein and promoting the migration and invasion of cancer cells by bundling F-actin to facilitate the formation of filopodia and invadopodia. However, it is not clear how exactly the function of Fascin is regulated by acetylation in cancer cells. Here, in ESCC cells, the histone acetyltransferase KAT8 catalyzed Fascin lysine 41 (K41) acetylation, to inhibit Fascin-mediated F-actin bundling and the formation of filopodia and invadopodia. Furthermore, NAD-dependent protein deacetylase sirtuin (SIRT) 7-mediated deacetylation of Fascin-K41 enhances the formation of filopodia and invadopodia, which promotes the migration and invasion of ESCC cells. Clinically, the analysis of cancer and adjacent tissue samples from patients with ESCC showed that Fascin-K41 acetylation was lower in the cancer tissue of patients with lymph node metastasis than in that of patients without lymph node metastasis, and low levels of Fascin-K41 acetylation were associated with a poorer prognosis in patients with ESCC. Importantly, K41 acetylation significantly blocked NP-G2-044, one of the Fascin inhibitors currently being clinically evaluated, suggesting that NP-G2-044 may be more suitable for patients with low levels of Fascin-K41 acetylation, but not suitable for patients with high levels of Fascin-K41 acetylation. © 2024 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Proteínas Portadoras , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Proteínas de Microfilamentos , Sirtuinas , Humanos , Acetilación , Actinas/metabolismo , Línea Celular Tumoral , Neoplasias Esofágicas/patología , Histona Acetiltransferasas/metabolismo , Metástasis Linfática , Sirtuinas/metabolismo
4.
Mol Cell Proteomics ; 22(8): 100593, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37328063

RESUMEN

Proteins containing a CAAX motif at the C-terminus undergo prenylation for localization and activity and include a series of key regulatory proteins, such as RAS superfamily members, heterotrimeric G proteins, nuclear lamina protein, and several protein kinases and phosphatases. However, studies of prenylated proteins in esophageal cancer are limited. Here, through research on large-scale proteomic data of esophageal cancer in our laboratory, we found that paralemmin-2 (PALM2), a potential prenylated protein, was upregulated and associated with poor prognosis in patients. Low-throughput verification showed that the expression of PALM2 in esophageal cancer tissues was higher than that in their paired normal esophageal epithelial tissues, and it was generally expressed in the membrane and cytoplasm of esophageal cancer cells. PALM2 interacted with the two subunits of farnesyl transferase (FTase), FNTA and FNTB. Either the addition of an FTase inhibitor or mutation in the CAAX motif of PALM2 (PALM2C408S) impaired its membranous localization and reduced the membrane location of PALM2, indicating PALM2 was prenylated by FTase. Overexpression of PALM2 enhanced the migration of esophageal squamous cell carcinoma cells, whereas PALM2C408S lost this ability. Mechanistically, PALM2 interacted with the N-terminal FERM domain of ezrin of the ezrin/radixin/moesin (ERM) family. Mutagenesis indicated that lysine residues K253/K254/K262/K263 in ezrin's FERM domain and C408 in PALM2's CAAX motif were important for PALM2/ezrin interaction and ezrin activation. Knockout of ezrin prevented enhanced cancer cell migration by PALM2 overexpression. PALM2, depending on its prenylation, increased both ezrin membrane localization and phosphorylation of ezrin at Y146. In summary, prenylated PALM2 enhances the migration of cancer cells by activating ezrin.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Movimiento Celular , Neoplasias Esofágicas/metabolismo , Proteómica
5.
Mol Cell Proteomics ; 22(6): 100551, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37076047

RESUMEN

Esophageal cancer is the seventh most common cancer in the world. Although traditional treatment methods such as radiotherapy and chemotherapy have good effects, their side effects and drug resistance remain problematic. The repositioning of drug function provides new ideas for the research and development of anticancer drugs. We previously showed that the Food and Drug Administration-approved drug sulconazole can effectively inhibit the growth of esophageal cancer cells, but its molecular mechanism is not clear. Here, our study demonstrated that sulconazole had a broad spectrum of anticancer effects. It can not only inhibit the proliferation but also inhibit the migration of esophageal cancer cells. Both transcriptomic sequencing and proteomic sequencing showed that sulconazole could promote various types of programmed cell death and inhibit glycolysis and its related pathways. Experimentally, we found that sulconazole induced apoptosis, pyroptosis, necroptosis, and ferroptosis. Mechanistically, sulconazole triggered mitochondrial oxidative stress and inhibited glycolysis. Finally, we showed that low-dose sulconazole can increase radiosensitivity of esophageal cancer cells. Taken together, these new findings provide strong laboratory evidence for the clinical application of sulconazole in esophageal cancer.


Asunto(s)
Neoplasias Esofágicas , Proteómica , Humanos , Línea Celular Tumoral , Neoplasias Esofágicas/metabolismo , Tolerancia a Radiación , Estrés Oxidativo , Apoptosis , Glucólisis
6.
Nucleic Acids Res ; 51(D1): D88-D100, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36318256

RESUMEN

Chromatin regulators (CRs) regulate epigenetic patterns on a partial or global scale, playing a critical role in affecting multi-target gene expression. As chromatin immunoprecipitation sequencing (ChIP-seq) data associated with CRs are rapidly accumulating, a comprehensive resource of CRs needs to be built urgently for collecting, integrating, and processing these data, which can provide abundant annotated information on CR upstream and downstream regulatory analyses as well as CR-related analysis functions. This study established an integrative CR resource, named CRdb (http://cr.liclab.net/crdb/), with the aim of curating a large number of available resources for CRs and providing extensive annotations and analyses of CRs to help biological researchers clarify the regulation mechanism and function of CRs. The CRdb database comprised a total of 647 CRs and 2,591 ChIP-seq samples from more than 300 human tissues and cell types. These samples have been manually curated from NCBI GEO/SRA and ENCODE. Importantly, CRdb provided the abundant and detailed genetic annotations in CR-binding regions based on ChIP-seq. Furthermore, CRdb supported various functional annotations and upstream regulatory information on CRs. In particular, it embedded four types of CR regulatory analyses: CR gene set enrichment, CR-binding genomic region annotation, CR-TF co-occupancy analysis, and CR regulatory axis analysis. CRdb is a useful and powerful resource that can help in exploring the potential functions of CRs and their regulatory mechanism in diseases and biological processes.


Asunto(s)
Cromatina , Bases de Datos Genéticas , Genómica , Humanos , Cromatina/genética , Bases de Datos Factuales , Genoma , Anotación de Secuencia Molecular
7.
Nat Chem Biol ; 18(2): 142-151, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34903851

RESUMEN

Protein lysine 2-hydroxyisobutyrylation (Khib) has recently been shown to play a critical role in the regulation of cellular processes. However, the mechanism and functional consequence of Khib in prokaryotes remain unclear. Here we report that TmcA, an RNA acetyltransferase, functions as a lysine 2-hydroxyisobutyryltransferase in the regulation of transcription. We show that TmcA can effectively catalyze Khib both in vitro and intracellularly, and that R502 is a key site for the Khib catalytic activity of TmcA. Using quantitative proteomics, we identified 467 endogenous candidates targeted by TmcA for Khib in Escherichia coli. Interestingly, we demonstrate that TmcA can specifically modulate the DNA-binding activity of H-NS, a nucleoid-associated protein, by catalysis of Khib at K121. Furthermore, this TmcA-targeted Khib regulates transcription of acid-resistance genes and enhances E. coli survival under acid stress. Our study reveals transcription regulation mediated by TmcA-catalyzed Khib for bacterial acid resistance.


Asunto(s)
Acetiltransferasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Acetiltransferasas/genética , Ácidos , Secuencia de Aminoácidos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica , Estrés Fisiológico , Transcripción Genética , Transcriptoma
8.
Eur J Epidemiol ; 39(6): 679-689, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703249

RESUMEN

The Chinese keratoconus (CKC) cohort study is a population-based longitudinal prospective cohort study in the Chinese population involving a clinical database and biobanks. This ongoing study focuses on the prevention of KC progression and is the first to involve the effect of gene‒environment interactions on KC progression. The CKC cohort is hospital-based and dynamic and was established in Zhengzhou, China; KC patients (n = 1114) from a large geographical area were enrolled from January 2019 to June 2023, with a mean age of 22.23 years (6‒57 years). Demographic details, socioeconomic characteristics, lifestyle, disease history, surgical history, family history, and visual and social function data are being collected using questionnaires. General physical examination, eye examination, biological specimen collection, and first-degree relative data were collected and analyzed in the present study. The primary focus of the present study was placed on gene, environment and the effect of gene‒environment interactions on KC progression. The follow-up of the CKC cohort study is expected to include data collection at 3 months, 6 months, and 1 year after the initial examination and then at the annual follow-up examinations. The first follow-up of the CKC cohort study was recorded. A total of 918 patients completed the follow-up by June 1, 2023, with a response rate of 82.40%. Aside from the younger age of patients who were followed up, no significant differences were found between patients who were followed up and patients who were not.


Asunto(s)
Interacción Gen-Ambiente , Queratocono , Humanos , Queratocono/genética , Queratocono/epidemiología , Femenino , Masculino , Adulto , China/epidemiología , Persona de Mediana Edad , Estudios Prospectivos , Adolescente , Adulto Joven , Estudios Longitudinales , Niño , Progresión de la Enfermedad , Estudios de Cohortes , Encuestas y Cuestionarios , Pueblo Asiatico/genética , Pueblo Asiatico/estadística & datos numéricos , Pueblos del Este de Asia
9.
J Cell Biochem ; 124(2): 221-238, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36502529

RESUMEN

Although the aberrant activity of fibroblast growth factor receptor 3 (FGFR3) is implicated in various cancers, the reported kinase inhibitors of FGFR3 tend to cause side effects resulting from the inhibitory activity on vascular endothelial growth factor receptor 2 (VEGFR2). Therefore, it is necessary to find a novel high-selective inhibitor of FGFR3 over VEGFR2 from the small-molecule compound database. In this study, integrated virtual screening protocols were established to screen for selective inhibitors of FGFR3 over VEGFR2 in Drugbank and Asinex databases by combining three-dimensional pharmacophore model, molecular docking, molecular dynamics (MD) simulation, and molecular mechanics Poisson-Boltzmann surface area (MMPBSA) calculations. Finally, it is found that Asinex-5082, as an octahydropyrrolo[3,2-b] pyridin derivative, has larger binding free energy with FGFR3 (-39.3 kcal/mol) than reference drug Erdafitinib (-29.9 kcal/mol), while cannot bind with VEGFR2, resulting in considerable inhibitory selectivity. This is because Asinex-5082, unlike Erdafitinib, has not m-dimethoxybenzene with large steric hindrance, thus can enter the larger ATP-binding pocket of FGFR3 with DFG-in conformation to form hydrophobic interaction with residues Met529, Ile539, and Tyr557 as well as hydrogen bond with Ala558. On the other hand, due to the fact that the benzodioxane and N-heterocyclic rings are connected by carbonyl (C=O), Asinex-5082 cannot rotate freely so as to enter the smaller ATP binding pocket of VEGFR2 on the DFG-out conformation. The lead molecule Asinex-5082 may facilitate the rational design and development of novel selective inhibitors of FGFR3 over VEGFR2 as anticancer drugs.


Asunto(s)
Inhibidores de Proteínas Quinasas , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Simulación del Acoplamiento Molecular , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo , Factor A de Crecimiento Endotelial Vascular , Simulación de Dinámica Molecular , Adenosina Trifosfato , Ligandos
10.
J Mol Recognit ; 36(1): e2998, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36225126

RESUMEN

Fascin is a filamentous actin (F-actin) bundling protein, which cross-links F-actin into bundles and becomes an important component of filopodia on the cell surface. Fascin is overexpressed in many types of cancers. The mutation of fascin affects its ability to bind to F-actin and the progress of cancer. In this paper, we have studied the effects of residues of K22, K41, K43, K241, K358, K399, and K471 using molecular dynamics (MD) simulation. For the strong-effect residues, that is, K22, K41, K43, K358, and K471, our results show that the mutation of K to A leads to large values of root mean square fluctuation (RMSF) around the mutated residues, indicating those residues are important for the flexibility and thermal stability. On the other hand, based on residue cross-correlation analysis, alanine mutations of these residues reinforce the correlation between residues. Together with the RMSF data, the local flexibility is extended to the entire protein by the strong correlations to influence the dynamics and function of fascin. By contrast, for the mutants of K241A and K399A those do not affect the function of fascin, the RMSF data do not show significant differences compared with wild-type fascin. These findings are in a good agreement with experimental studies.


Asunto(s)
Actinas , Simulación de Dinámica Molecular , Actinas/genética , Seudópodos/genética , Seudópodos/metabolismo , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Mutación
11.
Ann Surg Oncol ; 30(4): 2242-2243, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36581725

RESUMEN

The past eighth edition of the American Joint Committee on Cancer (AJCC)/International Union against Cancer (UICC) pathologic tumor-node-metastasis (pTNM) staging system for esophageal squamous cell carcinoma (ESCC) patients, which also is the gold standard of postoperative treatment decision-making, needs to be continuously improved. To improve the efficiency of the staging system, the proteomic data from Chinese ESCC patients was combined with preoperative radiomic data and pTNM data to establish the multiomic RadpTNM and ProtRadpTNM models and compare them with the traditional pTNM staging system. The results suggest that both the RadpTNM and ProtRadpTNM models are significantly better than the traditional pTNM staging system. Future prospective multicentered cohort studies in Asian and Caucasian patients with ESCC are warranted to evaluate the efficiency of the multiomic models.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Carcinoma de Células Escamosas de Esófago/cirugía , Carcinoma de Células Escamosas de Esófago/patología , Pronóstico , Estadificación de Neoplasias , Neoplasias Esofágicas/patología , Multiómica , Proteómica , Estudios Retrospectivos
12.
Ann Surg Oncol ; 30(4): 2227-2241, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36587172

RESUMEN

OBJECTIVE: This study aimed to construct a new staging system for patients with esophageal squamous cell carcinoma (ESCC) based on combined pathological TNM (pTNM) stage, radiomics, and proteomics. METHODS: This study collected patients with radiomics and pTNM stage (Cohort 1, n = 786), among whom 103 patients also had proteomic data (Cohort 2, n = 103). The Cox regression model with the least absolute shrinkage and selection operator, and the Cox proportional hazards model were used to construct a nomogram and predictive models. Concordance index (C-index) and the integrated area under the time-dependent receiver operating characteristic (ROC) curve (IAUC) were used to evaluate the predictive models. The corresponding staging systems were further assessed using Kaplan-Meier survival curves. RESULTS: For Cohort 1, the RadpTNM4c staging systems, constructed based on combined pTNM stage and radiomic features, outperformed the pTNM4c stage in both the training dataset 1 (Train1; IAUC 0.711 vs. 0.706, p < 0.001) and the validation dataset 1 (Valid1; IAUC 0.695 vs. 0.659, p < 0.001; C-index 0.703 vs. 0.674, p = 0.029). For Cohort 2, the ProtRadpTNM2c staging system, constructed based on combined pTNM stage, radiomics, and proteomics, outperformed the pTNM2c stage in both the Train2 (IAUC 0.777 vs. 0.610, p < 0.001; C-index 0.898 vs. 0.608, p < 0.001) and Valid2 (IAUC 0.746 vs. 0.608, p < 0.001; C-index 0.889 vs. 0.641, p = 0.009) datasets. CONCLUSIONS: The ProtRadpTNM2c staging system, based on combined pTNM stage, radiomic, and proteomic features, improves the predictive performance of the classical pTNM staging system.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Carcinoma de Células Escamosas de Esófago/diagnóstico por imagen , Carcinoma de Células Escamosas de Esófago/terapia , Carcinoma de Células Escamosas de Esófago/patología , Neoplasias Esofágicas/diagnóstico por imagen , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/patología , Proteómica , Estadificación de Neoplasias , Nomogramas
13.
Opt Express ; 31(20): 31670, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37858986

RESUMEN

The referenced article [Opt. Express30, 36489 (2022)10.1364/OE.470330] has been retracted by the authors.

14.
Chemistry ; 29(34): e202300381, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37005708

RESUMEN

Resonance-enhanced emission (REE) effect was discovered and lead to a novel dye family of hydrostyryl pyridinium derivatives in our recent work. Herein, the REE effect was employed to design a red and near-infrared dual-state emissive fluorophore family of SW-OH-NO2 derivatives which were easily synthesized by coupling an electron-withdrawing group (W) onto nitro(hydroxyl)styryl (S-OH-NO2 ) through a C=C double bond as π-bridge. The deprotonation of a phenolic hydroxyl group promoted by a nitro group and the electron-withdrawing group (W) on the other side of the π-bridge triggered resonance, resulting in significantly red-shifted emission. All the resultant SW-OH-NO2 compounds showed excellent dual-state emission behavior. Remarkably, hydrostyryl quinolinium (SQ-OH-NO2 ) is one of the smallest NIR emitter molecular skeleton (λem =725 nm, MW<400) and showed dual-state emission characteristics and obvious viscosity-depended fluorescent behaviors. In addition to constructing electron donor-acceptor structures and prolonging π-bridges, the REE effect promises a reliable strategy toward novel fluorophores with small size, long emissive wavelength, and dual-emission characteristics, and importantly, feasible industrial manufactures and applications due to their easy and low-cost synthesis strategy.

15.
Exp Eye Res ; 231: 109488, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37116607

RESUMEN

Keratoconus (KC) is a multifactorial disease in which genetic factors played important roles in its pathogenesis. The purpose of the current study was to identify the key candidate genes and pathways in Chinese patients with KC through bioinformatics analysis. Totally, we identified 71 candidate genes by analyzing the results of whole exome sequencing on 51 Chinese patients with KC, combining with previous reports on differential expression at transcription and protein levels in KC. Gene enrichment analysis with GeneCodis demonstrated that two significantly enriched terms including 21 genes in biological process (BP) were detected, and six significantly enriched terms containing 14 genes in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were discovered. The STRING was utilized to construct the protein-protein interaction (PPI) network of identified genes. The result showed that a PPI network consisted of 14 nodes with 14 edges was constructed, and two gene modules were obtained. Eight hub genes (LAMB3, LAMA3, LAMA1, ITGA6, ITGA3, COL6A3, COL6A2, and COL6A1) were identified as key candidate genes for KC by cytoHubba in Cytoscape. Functional enrichment analysis with ClueGO and CluePedia indicated that the ECM-receptor interaction was the key pathway accounted for KC. The findings might provide novel insights on the genetic basis of KC.


Asunto(s)
Perfilación de la Expresión Génica , Queratocono , Humanos , Perfilación de la Expresión Génica/métodos , Queratocono/genética , Pueblos del Este de Asia , Mapas de Interacción de Proteínas/genética , Biología Computacional/métodos
16.
Exp Eye Res ; 226: 109342, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36502923

RESUMEN

Keratoconus (KC) is a complex corneal disorder with genetic factors involving in its pathogenesis. The genetic etiology of KC has not been fully elucidated. In this study, we aimed to expand the genetic spectrum in KC by trio-based exome sequencing. Trio-based exome sequencing was conducted in 20 patients with KC and their unaffected parents to broaden the genetic spectrum of the disease. With a series of filtering criteria, de novo, recessive homozygous, and compound heterozygous variants in candidate genes were identified, and the candidate genes were classified for further analysis. Finally, we identified 60 variants in 32 candidate genes through trio-based exome sequencing. Among the candidate genes, 10 genes (ARHGEF10, ARHGEF17, ASPM, FLNA, NDRG1, NEB, PLS3, STARD8, SYNE1, TTN) were classified as cytoskeleton-related genes, 4 genes (COL28A1, SDK1, STAB1, TENM2) were classified as cell adhesion-related genes, and 18 genes (APLP2, BCORL1, CCNB3, FOXN1, FUT8, GALNT10, HEPH, HHIP, HMGB3, HS6ST2, JADE3, KIAA0040, MCF2L, MYOF, QRICH2, RPS6KA6, SMARCA1, TNRC6A) were classified into other genes group. Additionally, the candidate rare deleterious variants in TTN were highly repeated in 25% trios. In conclusion, the study provided new insights into the genetic spectrum of KC which might underlie the genetic etiology for the disease. The findings would improve our understanding of pathogenesis in KC and provide critical clues to future functional validation.


Asunto(s)
Queratocono , Humanos , Queratocono/genética , Secuenciación del Exoma , Homocigoto , Sulfotransferasas/genética
17.
Environ Res ; 216(Pt 1): 114499, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36208780

RESUMEN

BACKGROUND: Benefits of green spaces on stress reduction have been shown in previous studies. Most existing studies to date have focused on the general population. However, there is a lack of understanding of physiological mechanisms underlying the beneficial effects of green space among special populations, such as pregnant women. OBJECTIVES: To examine physiological and affective responses to green space on stress recovery among pregnant women, using simulated green space exposure through virtual reality (VR). METHODS: We recruited 63 pregnant women between 8 and 14 weeks' gestational age for a laboratory experiment. Participants were randomly assigned to view one of three, 5-min, VR videos of an urban scene with different green space levels (i.e., non-green, moderate, and high) after a laboratory stressor, the Trier Social Stress Test. Physiological stress responses were measured via changes in blood pressure, heart rate, skin conductance level, salivary alpha-amylase, and salivary cortisol. Affective response was measured using the Positive and Negative Affect Scale. RESULTS: We found that visual exposure to a green space environment in VR was associated with both physiological and affective stress reduction among pregnant women, including lower systolic blood pressure [-4.6 mmHg, 95% confidence interval (CI): -8.8, -0.4], reduced salivary alpha-amylase concentration (-1.2 ng/ml, 95% CI: -2.2, -0.2), improved overall positive affect (score: 6.6, 95% CI: 0.3, 13.0) and decreased negative affect of anxiety (score: -2.6, 95% CI: -5.19, -0.04) compared to non-green space environment. Exposure to high green space environment in park-like setting had the strongest impacts on stress recovery. CONCLUSION: This study demonstrated that virtual green space exposure could effectively ease stress and improve mental health and well-being during pregnancy. Even a short immersion in VR-based green space environment may bring health benefits, which has significant implications for pregnant women when access to an actual nature may not be possible.


Asunto(s)
Afecto , Parques Recreativos , Mujeres Embarazadas , alfa-Amilasas Salivales , Realidad Virtual , Femenino , Humanos , Embarazo , Hidrocortisona , Estrés Psicológico
18.
Mol Cell Proteomics ; 20: 100053, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33561546

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is an aggressive malignancy with poor therapeutic outcomes. However, the alterations in proteins and posttranslational modifications (PTMs) leading to the pathogenesis of ESCC remain unclear. Here, we provide the comprehensive characterization of the proteome, phosphorylome, lysine acetylome, and succinylome for ESCC and matched control cells using quantitative proteomic approach. We identify abnormal protein and PTM pathways, including significantly downregulated lysine succinylation sites in cancer cells. Focusing on hyposuccinylation, we reveal that this altered PTM was enriched on enzymes of metabolic pathways inextricably linked with cancer metabolism. Importantly, ESCC malignant behaviors such as cell migration are inhibited once the level of succinylation was restored in vitro or in vivo. This effect was further verified by mutations to disrupt succinylation sites in candidate proteins. Meanwhile, we found that succinylation has a negative regulatory effect on histone methylation to promote cancer migration. Finally, hyposuccinylation is confirmed in primary ESCC specimens. Our findings together demonstrate that lysine succinylation may alter ESCC metabolism and migration, providing new insights into the functional significance of PTM in cancer biology.


Asunto(s)
Acilcoenzima A/metabolismo , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas de Esófago/metabolismo , Lisina/metabolismo , Proteoma/metabolismo , Acetilación , Animales , Línea Celular Tumoral , Movimiento Celular , Epitelio/metabolismo , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/patología , Esófago/metabolismo , Humanos , Masculino , Ratones Desnudos , Procesamiento Proteico-Postraduccional , Estudios Retrospectivos
19.
Nucleic Acids Res ; 49(16): 9246-9263, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34370013

RESUMEN

To reconstruct systematically hyperactive transcription factor (TF)-dependent transcription networks in squamous cell carcinomas (SCCs), a computational method (ELMER) was applied to 1293 pan-SCC patient samples, and 44 hyperactive SCC TFs were identified. As a top candidate, DLX5 exhibits a notable bifurcate re-configuration of its bivalent promoter in cancer. Specifically, DLX5 maintains a bivalent state in normal tissues; its promoter is hypermethylation, leading to DLX5 transcriptional silencing in esophageal adenocarcinoma (EAC). In stark contrast, DLX5 promoter gains active histone marks and becomes transcriptionally activated in ESCC, which is directly mediated by SOX2. Functionally, silencing of DLX5 substantially inhibits SCC viability both in vitro and in vivo. Mechanistically, DLX5 cooperates with TP63 in regulating ∼2000 enhancers and promoters, which converge on activating cancer-promoting pathways. Together, our data establish a novel and strong SCC-promoting factor and elucidate a new epigenomic mechanism - bifurcate chromatin re-configuration - during cancer development.


Asunto(s)
Adenocarcinoma/genética , Carcinoma de Células Escamosas/genética , Neoplasias Esofágicas/genética , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Adenocarcinoma/patología , Animales , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Proliferación Celular/genética , Metilación de ADN/genética , Neoplasias Esofágicas/patología , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Xenoinjertos , Humanos , Masculino , Ratones , Persona de Mediana Edad , Regiones Promotoras Genéticas/genética
20.
BMC Public Health ; 23(1): 2032, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37853356

RESUMEN

BACKGROUND: Although body mass index (BMI) and eye rubbing are linked to an increased risk of keratoconus (KC), the interactive effect of eye rubbing and BMI on KC is largely unknown. This study aimed to evaluate the independent and interactive effects of BMI and eye rubbing on KC and to further explore the role of environmental factors on the occurrence of KC. METHODS: A total of 621 individuals (291 KC patients and 330 control individuals) were enrolled in this hospital­based study on KC patients in Central China after individuals missing BMI data were excluded. BMI was calculated as weight in kilograms divided by the square of height in meters. Data on eye rubbing was recorded through face-to-face interviews. Generalized linear regression models were used to analyze associations among BMI, eye rubbing and KC. Interaction plots were used to describe the interactive effects of BMI and eye rubbing on KC. RESULTS: The ß and 95% confidence interval (CI) were 0.923 (0.112, 1.733) (p = 0.026) and 3.356 (1.953, 4.759) (p < 0.001), respectively, for the effect of each 10 kg/m2 increase in BMI and each 1 min increase in eye rubbing on KC. The interaction of BMI and eye rubbing were positively correlated with KC (p < 0.001). CONCLUSION: These findings suggested that a high BMI aggravated the negative effect of eye rubbing on KC, implying that individuals with a high BMI may be more susceptible to exposure to eye rubbing, which is related to an increased risk of KC.


Asunto(s)
Índice de Masa Corporal , Lesiones de la Cornea , Queratocono , Humanos , Estudios de Casos y Controles , China/epidemiología , Pueblos del Este de Asia , Queratocono/epidemiología , Queratocono/etiología , Masaje/efectos adversos , Lesiones de la Cornea/epidemiología , Lesiones de la Cornea/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA